K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 7 2023

Lời giải:

Theo định lý Bê-du về phép chia đa thức thì số dư của $f(x)$ chia cho $x-a$ có số dư là $f(a)$. 

Áp dụng vào bài:

$f(2)=8a+4b+10=14\Leftrightarrow 2a+b=1(1)$

$f(-1)=-a+b-14=-16\Leftrightarrow -a+b=-2(2)$

Từ $(1); (2)\Rightarrow a=1; b=-1$

 

d: Ta có: f(x):g(x)

\(=\dfrac{x^3-2x^2+3x+5}{x+1}\)

\(=\dfrac{x^3+x^2-3x^2-3x+6x+6-1}{x+1}\)

\(=x^2-3x+6+\dfrac{-1}{x+1}\)

Để f(x) chia hết cho g(x) thì \(x+1\in\left\{1;-1\right\}\)

hay \(x\in\left\{0;-2\right\}\)

 

27 tháng 1 2022

a) Ta có f(x) - 5 \(⋮\)x + 1 

=> x3 + mx2 + nx + 2 - 5 \(⋮\)x + 1

=> x3 + mx2 + nx  - 3 \(⋮\)x + 1

=> x = - 1 là nghiệm đa thức 

Khi đó (-1)3 + m(-1)2 + n(-1) - 3 = 0

<=> m - n = 4 (1) 

Tương tự ta được f(x) - 8 \(⋮\)x + 2 

=> x3 + mx2 + nx - 6 \(⋮\) x + 2

=> x = -2 là nghiệm đa thức

=> (-2)3 + m(-2)2 + n(-2) - 6 = 0

<=> 2m - n = 7 (2) 

Từ (1)(2) => HPT \(\left\{{}\begin{matrix}m-n=4\\2m-n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\n=-1\end{matrix}\right.\)

Vậy đa thức đó là f(x) = x3 + 3x2 - x + 2  

27 tháng 1 2022

b)  f(x) - 7 \(⋮\)x + 1

=> x3 + mx + n - 7 \(⋮\) x + 1 

=> x = -1 là nghiệm đa thức 

=> (-1)3 + m(-1) + n - 7 = 0

<=> -m + n = 8 (1) 

Tương tự ta được : x3 + mx + n + 5 \(⋮\)x - 3 

=> x = 3 là nghiệm đa thức 

=> 33 + 3m + n + 5 = 0

<=> 3m + n = -32 (2) 

Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}3m+n=-32\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m=-40\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-10\\n=-2\end{matrix}\right.\)

Vậy f(x) = x3 - 10x -2

b: Ta có: f(x):g(x)

\(=\dfrac{x^3-2x^2+3x+a}{x+1}\)

\(=\dfrac{x^3+x^2-3x^2-3x+6x+6+a-6}{x+1}\)

\(=x^2-3x+6+\dfrac{a-6}{x+1}\)

Để f(x):g(x) là phép chia hết thì a-6=0

hay a=6

a: Thay a=3 vào f(x), ta được:

\(f\left(x\right)=x^3-2x^2+3x+3\)

\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^3-2x^2+3x+3}{x+1}\)

\(=\dfrac{x^3+x^2-3x^2-3x+6x+6-3}{x+1}\)

\(=x^2-3x+6-\dfrac{3}{x+1}\)

 

17 tháng 2 2015

Huyền hỏi 2 bài liên tiếp à viết nhanh thế

17 tháng 2 2015

Các dạng bài này đc giải rất nhiều sao bạn ko coi thế?

Ta có f(x)=0 <=> \(\left(x-1\right)\left(x+2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên 1 và -2 là nghiệm của đa thức g(x)

+Thay x=1, ta có: \(g\left(1\right)=1^3+a.1^2+b.1+2=0\Leftrightarrow1+a+b+2=0\Leftrightarrow a+b=-3\left(1\right)\)

+Thay x=-2, ta có: 

\(g\left(-2\right)=\left(-2\right)^3+a.2^2+b.\left(-2\right)+2=0\Leftrightarrow-8+4a-2b+2=0\Leftrightarrow4a-2b=6\left(2\right)\)

Từ (1) và (2) ta có hệ pt: \(\left\{{}\begin{matrix}a+b=-3\\4a-2b=6\end{matrix}\right.\) 

Giải hệ pt, ta được: a=0, b=-3.

28 tháng 5 2021

Ta có : f(x) = 0 

⇔ ( x-1)(x+2) = 0 

⇔ \(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên x =1 hoặc x = -2 là nghiệm của g(x) 

Thay x = 1 vào g(x) = 0 

⇔ 13 + a.1+ b.1 + 2 = 0 

⇔ 1 + a + b + 2 = 0 

⇔ a + b = -3 (1) 

Thay x = -2 vào g(x) = 0 

⇔ (-2)3 + a.(-2)+ b.(-2) + 2 = 0 

⇔ -8 + a.4 - 2.b + 2 = 0 

⇔ 4a - 2b = 6 

⇔ 2.(2a - b ) = 6 

⇔ 2a - b = 3 (2) 

Từ (1) và (2) ⇒ \(\left\{{}\begin{matrix}a+b=-3\\2a-b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=0\\b=-3-a\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)