Tìm GTLN của biểu thức sau: A= 5-(x+1)2-|3x-2|2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(6,\\ a,\\ 1,A=x^2+3x+7=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)
\(2,B=\left(x-2\right)\left(x-5\right)\left(x^2-7x+10\right)=\left(x-2\right)^2\left(x-5\right)^2\ge0\)
Dấu \("="\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
\(b,\\ 1,A=11-10x-x^2=-\left(x+5\right)^2+36\le36\)
Dấu \("="\Leftrightarrow x=-5\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Ta có: \(A=\left|x+2\right|+\left|x-5\right|=\left|x+2\right|+\left|5-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(A=\left|x+2\right|+\left|5-x\right|\ge\left|x+2+5-x\right|=\left|7\right|=7\)
Dấu " = " khi \(\left\{{}\begin{matrix}x+2\ge0\\5-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\le5\end{matrix}\right.\)
Vậy \(MIN_A=7\) khi \(-2\le x\le5\)
b, Ta có: \(\left\{{}\begin{matrix}\left|2x-1\right|\ge0\\\left|2y+3\right|\ge0\end{matrix}\right.\Leftrightarrow\left|2x-1\right|+\left|2y+3\right|\ge0\)
\(\Leftrightarrow B=\left|2x-1\right|+\left|2y+3\right|-2017\ge-2017\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left|2x-1\right|=0\\\left|2y+3\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy \(MIN_B=-2017\) khi \(x=\dfrac{1}{2}\) và \(y=\dfrac{-3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì (x + 1)2 ≥ 0; |3x - 2|2017 ≥ 0
=> (x + 1)2 + |3x - 2|2017 ≥ 0
=> A = 5 - (x + 1)2 + |3x - 2|2017 ≤ 5 có gtnn là 5
Dấu "=" xảy ra khi (x + 1)2 = 0; |3x - 2|2017 = 0
=> x = - 1 ; y = 2/3
Vậy gtnn của A là 5 tại x = - 1 ; y = 2/3
nhận xét
(x+1)^2 >=0
|3x-2|^2017>=0
=> 5 - ( x+1)^2 - |3x-2|^2017 =< 5
vậy giá trị lớn nhất của biểu thức là 5
không có giá trị của x để biểu thức đạt giá trị lớn nhất