K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2021

\(5-2x\ge0\)

\(\Leftrightarrow5\ge2x\)

\(\Leftrightarrow x\le\dfrac{5}{2}\)

\(S=\left\{x|x\le\dfrac{5}{2}\right\}\)

=> B

AH
Akai Haruma
Giáo viên
5 tháng 4 2021

Lời giải:

PT $\Leftrightarrow x(m-2)=m^2-4$

a) Để pt nhận $1$ là nghiệm thì $1(m-2)=m^2-4$

$\Leftrightarrow m-2=m^2-4=(m-2)(m+2)$

$\Leftrightarrow (m-2)(m+2-1)=0$

$\Leftrightarrow (m-2)(m+1)=0\Rightarrow m=2$ hoặc $m=-1$

b) Để pt có nghiệm thì:

\(\left[\begin{matrix} m-2\neq 0\\ m-2=m^2-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m\neq 2\\ m=2\end{matrix}\right.\) hay $m\in\mathbb{R}$

Vậy pt có nghiệm với mọi $m\in\mathbb{R}$

c) Kết quả phần b suy ra không tồn tại giá trị của $m$ để pt vô nghiệm.

31 tháng 3 2020

câu 14 mik k chắc lắm

9.Với giá trị nào của m thì pt (m-4)x+5=0 trở thành pt bậc nhất:

a.m=4 b.m ≠ 4 c.m= -4 d.m= ≠ 4

11.x= 2/3 là nghiệm của pt nào?

a. 2x+3 = 0 b.3-2x = 0 c.3x-2 = 0 d.3x + 2 = 0

12.Phương trình x+3-x = 3 có nghiệm:

a.Vô nghiệm b. Vô số nghiệm c.một nghiệm d. 2 nghiệm

13.Giải pt x2 -5x-6=0 ta có tập nghiệm:

a. S=(-1) b. S=(6) c. S=(-1;6) d. S=(1;-6)

14. Cho các phương trình x=0, x(x-3) = 0, x-3=0, x2 -3x=0, Ta có:

a.x=0 ⇔ x-3=0 b.x2 -3x =0⇔x(x-3)=0 c.x-3=0⇔x2 -3x=0 d.x=0⇔x(x-3)=0

15.Cho pt (1) có tập nghiệm S1 =(3;-2), pt (2) tương đương với pt (1) nếu có tập nghiệm S2 là:

a.S2 =(-3;2) b.S2 =(-2;3) c.S2 =(-3;-2) d.S2 =(2;3)

16.Với giá trị của m thì x=1 là nghiệm của pt mx2 -4=0 :

a.m=0 b.∀m∈R c.m=2 d.m=4

31 tháng 3 2020

Bạn làm đúng hết nha cả câu 14 ^^

NV
8 tháng 3 2022

a.

- Với \(m=\pm1\Rightarrow-6x=1\Rightarrow x=-\dfrac{1}{6}\) có nghiệm

Đặt \(f\left(x\right)=\left(1-m^2\right)x^3-6x-1\)

- Với \(\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\Rightarrow1-m^2>0\)

\(f\left(0\right)=-1< 0\)

\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left[\left(1-m\right)^2x^3-6x-1\right]\)

\(=\lim\limits_{x\rightarrow-\infty}x^3\left(1-m^2-\dfrac{6}{m^2}-\dfrac{1}{m^3}\right)=-\infty\left(1-m^2\right)=+\infty\) dương

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;0\right)\)

- Với \(-1< m< 1\Rightarrow1-m^2< 0\)

\(\lim\limits_{x\rightarrow+\infty}\left[\left(1-m^2\right)x^3-6x-1\right]=\lim\limits_{x\rightarrow+\infty}x^3\left[\left(1-m^2\right)-\dfrac{6}{x^2}-\dfrac{1}{x^3}\right]=+\infty\left(1-m^2\right)=+\infty\) dương

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)

Vậy pt đã cho có nghiệm với mọi m

NV
8 tháng 3 2022

b. Để chứng minh pt này có đúng 1 nghiệm thì cần áp dụng thêm kiến thức 12 (tính đơn điệu của hàm số). Chỉ bằng kiến thức 11 sẽ ko chứng minh được

c. 

Đặt \(f\left(x\right)=\left(m-1\right)\left(x-2\right)^2\left(x-3\right)^3+2x-5\)

Do \(f\left(x\right)\) là hàm đa thức nên \(f\left(x\right)\) liên tục trên R

\(f\left(2\right)=4-5=-1< 0\)

\(f\left(3\right)=6-5=1>0\)

\(\Rightarrow f\left(2\right).f\left(3\right)< 0\) với mọi m

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (2;3) với mọi m

Hay pt đã cho luôn luôn có nghiệm

27 tháng 1 2022

a2 là a^2 hay a.2?

27 tháng 1 2022

a^2