Tìm số abcde biết abcde = a.b.c.d.e.45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là abcde
=> a.b.c.d.e.45 = abcde
VT chia hết cho 5 => VP chia hết cho 5 => e=5
a.b.c.d.5.45=abcd5
VT chia hết cho 25 => VP chia hết 25 => de=25 hoặc 75
*de=25 => a.b.c.2.5.45=abc25 => Vô lý vì VT tận cùng là 0
=> de=75
Ta có: a.b.c.7.5.45=abc75
a.b.c<999757.5.45) = 63 (*)
Mặt khác ta có abc75=a.b.c.7.5.45
=> 100.abc= a.b.c.7.5.45-75
VP chia hết cho 75 => VT cũng chia hết cho 75
100 chia hết 25 => abc chia hết cho 3 => a+b+c chia hết cho 3 (**)
a,b,c không thể có số chẵn vì nếu có 1 số chẵn thì tích a.b.c.d.e=0
=> (a,b,c) = (1,3,5,7,9) (***)
Từ (*) (**) và (***) ta suy ra (a,b,c) có thể là 1 trong 3 nhóm sau
(1,5,9), (1,3,5), (1,7,7)
Thay lần lượt 3 nhóm kia vào, ta thấy nhóm (1,7,7) là thỏa mãn
=> abcde= 1.7.7.7.5.45 = 77175
a,b,c,d,e phải là số lẻ nếu không thì abcde = 0
Vì 45 bằng 5 nhân 9 nên abcde chia hết cho 5 và 9 , vậy e = 5
vì e bằng 5 nên 45 nhân a nhân b nhân c nhân d nhân e chia hết cho 25
Tức là d5 phải chia hết cho 25
vì a, b, c, d, e đều lẻ nên d5 = 75
Vậy số cần tìm là 77175
abcd5abcde = a . b . c . d . e . 45
Để abcde ≠≠0 thì a, b, c, d, e là số lẻ
Tử đó suy ra e = 5
abcde = a . b . c . d . 5 . 45
abcd5 = a . b . c . d . 9 . 25
Vì abcd5 chia hết cho 25 nên d5 chia hết cho 25. Suy ra d = 2 hoặc 7. Nhưng d là số lẻ nên d = 7.
abc75 = a . b . c . 7 . 9 . 25
Vì a, b, c ≤≤9 nên a + b + c ≤≤27.
abc00 + 75 = a . b . c . 7 . 9 . 25
Vì 75 chia 9 dư 3 và abc00 + 75 chia hết cho 9 nên abc00 chia 9 phải dư 6. Suy ra a + b + c chia 9 dư 6. Vậy a + b + c có thể là 6, 15,
24. Nhưng a + b + c lẻ nên a + b + c = 15.
Từ thử chọn ta tìm được a = 7, b = 7, c = 1.
Vậy abcde = 77175.
Vế phải chia hết cho 5 và khác 0 nên abcde có tận cùng là 5 nên e = 5. Suy ra abcd5 chia hết cho 25 nên d = 2 hoặc 7.
d=2 loại vì a x b x c x 2 x 5 x 45 có tận cùng là 0. Vậy d = 7.
Ta có: abc x 100 + 75 = a x b x c x 7 x 9 x 5 x 5. Chia cả 2 vế cho 25 ta được:
abc x 4 + 3 = a x b x c x 63
c = 0,2,4,6,8 loại vì vế phải chẵn, vế trái lẻ.
c = 5 loại vì tận cùng bên phải là 5, bên trái tận cùng là 3.
+ c = 1. Ta có:
ab1 x 4 + 3 = a x b x 63. Vế trái lẻ nên b lẻ. Mặt khác b >6 vì nếu b<6 thì a <0. Thay b = 7 ta có a = 7 thoả mãn. b = 9 loại.
+ c = 3. Ta có:
ab3 x 4 + 3 = a x b x 189. Vế trái lẻ nên b lẻ. Mặt khác: b<3 vì nếu b > 3 thì a <1. Thay b = 1 vào ta có:
a13 x 4 + 3 = 189 x a. Loại vì a<0
+ c = 7. Ta có:
ab7 x 4 + 3 = a x b x 441.
b< 2 vì nếu b >2 thì a<1.
b = 1 thay vào không thoả mãn vì a không nguyên.
+ c = 9. Ta có:
ab9 x 4 + 3 = a x b x 567
b< 2 vì nếu b >2 thì a<1.
b = 1 thay vào không thoả mãn vì a không nguyên.
Vậy abcde = 77175.
Giải
Gọi số cần tìm là abcde
=> a.b.c.d.e.45 = abcde
VT chia hết cho 5 => VP chia hết cho 5 => e=5
a.b.c.d.5.45=abcd5
VT chia hết cho 25 => VP chia hết 25 => de=25 hoặc 75
*de=25 => a.b.c.2.5.45=abc25 => Vô lý vì VT tận cùng là 0
=> de=75
Ta có: a.b.c.7.5.45=abc75
a.b.c<999757.5.45) = 63 (*)
Mặt khác ta có abc75=a.b.c.7.5.45
=> 100.abc= a.b.c.7.5.45-75
VP chia hết cho 75 => VT cũng chia hết cho 75
100 chia hết 25 => abc chia hết cho 3 => a+b+c chia hết cho 3 (**)
a,b,c không thể có số chẵn vì nếu có 1 số chẵn thì tích a.b.c.d.e=0
=> (a,b,c) = (1,3,5,7,9) (***)
Từ (*) (**) và (***) ta suy ra (a,b,c) có thể là 1 trong 3 nhóm sau
(1,5,9), (1,3,5), (1,7,7)
Thay lần lượt 3 nhóm kia vào, ta thấy nhóm (1,7,7) là thỏa mãn
=> abcde= 1.7.7.7.5.45 = 77175
Gọi số vé bán được là: abcde (a khác 0 và a, b, c,d, e<10).
Theo đề bài ta có:
abcde = 45 x a x b x c x d x e
Do vậy b,c,d,e đều phải khác 0
Ta có: abcde = 5 x 9 x a x b x c x d x e
abcde chia hết cho 5 nên e = 0 hoăc 5 => e = 5 (vì e khác 0)
Số abcd5 là số lẻ nên a, b,c, d, e đầu là các chữ số lẻ.
Ta có: abcd5 = 5 x 9 x a x b x c x d x 5
abcd5 = 25 x 9 x a x b x c x d
Do đó, abcd5 chia hết cho 25. Mà abcd5 = abcx100 + d5
=> d5 chia hết cho 25 mà d lẻ => d = 7.
Ta có abcd5 = abc75 chia hết cho 9 (vì 45=5x9) nên a + b + c + 7 + 5 = a + b + c + 12 chia hết cho 9. Mà 2 < a + b + c < 28.
Do đó: a + b + c = 6; 15 hoặc 24
Vì a, b, c lẻ nên a + b + c lẻ = > a + b + c = 15
Mà 15 = 1 + 5 + 9 = 1 + 7 + 7 = 3 + 3 + 9 = 3 + 5 + 7 = 5 + 5 + 5
Vì ta có 45 x a x b x c x 7 x 5 < 100.000
nên a x b x c < 64. Do đó ta chỉ còn xét hai trường hợp, ba chữ số a, b, c có tổng là 1 + 5 + 9 và 1 + 7 + 7.
Thử chọn thấy 77175 là thích hợp.
Đ/S: 77175. tick mình nha
abcde = 95111
abcde = 95111