Giúp mình với
tính tổng S=1+2+22+23+...+22021+2 mũ 2022
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2P=2+2^2+2^3+...+2^{2022}\)
\(\Leftrightarrow P=2^{2022}-1< Q\)
\(2P=2+2^2+2^3+...+2^{2022}\)
\(\Leftrightarrow P< Q\)
\(2S=2+2^2+...+2^{2022}\\ \Leftrightarrow2S-S=S=2^{2022}-1\)
\(S=1+2+2^2+2^3+2^4+...+2^{2011}\)
\(\Rightarrow S=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{2009}\left(1+2+2^2\right)\)
\(\Rightarrow S=7+2^3.7+...+2^{2009}.7\)
\(\Rightarrow S=7\left(1+2^3+...+2^{2009}\right)⋮7\)
\(\Rightarrow dpcm\)
\(A=1+2^2+2^3+...+2^{2022}\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{2023}\)
\(\Rightarrow A=2A-A=2+2^3+...+2^{2023}-1-2^2-...-2^{2022}=2-1+2^{2023}-2^2=-3+2^{2023}\)
A = 1 + 22 + 23 + ..... + 22021 + 22022
2A = 2(1 + 22 + 23 + ..... + 22021 + 22022)
2A = 2 + 23 + 24 + ..... + 22022 + 22023
2A - A = (2+23 + 24 + ..... + 22022 + 22023) - (1 + 22 + 23 + .... + 22021 + 22022 )
Thấy sai sai sao í -))
2A=2*(1+2+22+...+22020)=2+22+...+22021
2A-A=(1+2+22+...+22021)-(1+2+22+...+22020)
A=22021-1<2021
Giải:
A=1+2+22+23+...+22020
2A=2+22+23+24+...+22021
2A-A=(2+22+23+24+...+22021)-(1+2+22+23+...+22020)
A=22021-1
⇒A<22021
Chúc bạn học tốt!
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\)
\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2}.\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)\)\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\)
\(\Rightarrow A-\dfrac{1}{2}A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\right)\)\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{2^{2022}}\)
\(\Rightarrow\dfrac{1}{2}A=\dfrac{2^{2021}-1}{2^{2022}}\)
\(\Rightarrow A=\dfrac{2^{2021}-1}{2^{2023}}.2=\dfrac{2^{2021}-1}{2^{2021}}\)
Vậy \(A=\dfrac{2^{2021}-1}{2^{2021}}\)
S=1+2+2^2+...+2^2022
2S=2+2^2+2^3+...+2^023
2S+S=(1+2+2^2+...+2^2022)+(2+2^2+2^3+...+2^2023)
3S=1+2^2023
S=1+2^2023
________ .
3