tim x: (x^2-1)(x^2-4)(x^2-7)(x^2-10)<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)<0\)
=>\(\left[\left(x^2-1\right)\left(x^2-7\right)\right].\left[\left(x^2-4\right)\left(x^2-10\right)\right]<0\)
=>\(\left[\left(x^2-4+3\right)\left(x^2-4-3\right)\right].\left[\left(x^2-7+3\right)\left(x^2-7-3\right)\right]<0\)
=>\(\left[\left(x^2-4\right)^2-3^2\right].\left[\left(x^2-7\right)^2-3^2\right]<0\)
=>\(\left[\left(x^2-4\right)^2-9\right].\left[\left(x^2-7\right)^2-9\right]<0\)
=>(x2-4)-9 và (x2-7)-9 khác dấu
Vì \(\left(x^2-4\right)^2-9>\left(x^2-7\right)^2-9\)
=>\(\left(x^2-4\right)^2-9>0=>\left(x^2-4\right)^2>9=>x^2-4>3=>x^2>7=>x>2\)
Và \(\left(x^2-7\right)^2-9<0=>\left(x^2-7\right)^2<9=>x^2-7<3=>x^2<10=>x<4\)
=>2<x<4
mà \(x\in Z\)
=>x=3
Vậy x=3
Thật là một bài toán khó!
\(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
Ta có: \(\left(x^2-1\right)>\left(x^2-4\right)>\left(x^2-7\right)>\left(x^2-10\right)\)
Để \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
Thì \(\hept{\begin{cases}\left(x^2-1\right)\left(x^2-4\right)>0\\\left(x^2-7\right)\left(x^2-10\right)< 0\end{cases}}\)suy ra
Dễ thấy giá trị lớn nhất của \(x^2\) để \(x^2-10< 0\)là: 9. Suy ra x = 3
Dễ thấy giá trị nhỏ nhất của \(x^2\)để \(x^2-7>0\)là: 8 . Suy ra \(x=2\sqrt{2}\)
(Ta không cần xét giá trị nhỏ nhất của x để \(x^2-4>0\)hoặc \(x^2-1>0\))
Do đó ta có 2 giá trị của x là: \(\hept{\begin{cases}x_1=2\sqrt{2}\\x_2=3\end{cases}}\)
Vậy.....
a, -5/7+ 1+ 30/-7< x < -1/6+ 1/3 +5/6
<=> -4< x <1
<=> x = -3; -2; -1; 0
a, \(\dfrac{-5}{7}+1+\dfrac{30}{-7}\le x\le\dfrac{-1}{6}+\dfrac{1}{3}+\dfrac{5}{6}\)
<=> -4 \(\le x\le1\)
Do x \(\in Z\Rightarrow x=-4;-3;-2;-1;0;1\)
b, \(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{4}\right)< x< \dfrac{1}{48}-\left(\dfrac{1}{16}-\dfrac{1}{6}\right)\)
<=> -\(\dfrac{1}{12}< x< \dfrac{1}{8}\)
Do x \(\in Z\Rightarrow x=0;1\)
@Mai Tran
1: (x-1)(x-2)<=0
=>1<=x<=2
mà x là số nguyên
nên \(x\in\left\{1;2\right\}\)
2: \(\left(2x-4\right)\left(2x-10\right)< 0\)
=>4<2x<10
=>2<x<5
mà x là số nguyên
nên \(x\in\left\{3;4\right\}\)
4: \(\left(x^2-7\right)\left(x^2-1\right)< =0\)
\(\Leftrightarrow1\le x^2\le7\)
mà x là số nguyên
nên \(x\in\left\{1;-1;2;-2\right\}\)