K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2022

\(\left(2x-1\right)^3=8\)

\(\Rightarrow\left(2x-1\right)^3=2^3\)

\(\Rightarrow2x-1=2\)

\(\Rightarrow2x=3\)

\(\Rightarrow x=\dfrac{3}{2}\)

Vậy \(x=\dfrac{3}{2}\).

\(\left(x-2\right)^2=16\)

\(\Rightarrow\left(x-2\right)=\left(\pm4\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x-2=4\\x-2=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)

Vậy \(x=6;x=-2\).

 

AH
Akai Haruma
Giáo viên
4 tháng 9 2023

Bạn nên viết đề bằng công thức toán và ghi đầy đủ yêu cầu đề để mọi người hiểu đề của bạn hơn nhé.

4 tháng 9 2023

Bài này là dạng bất phương trình vô tỉ ạ

10 tháng 9 2021

a)3(x-2)+2(x-3)=5

=>3x-6+2x-6=5

=>5x=17

=>x=17/5

10 tháng 9 2021

b)(2x-8)^2=16

TH1:2x-8=4=>x=6

TH2:2x-8=-4=>x=2

2 tháng 9 2021

a) \(3\left(x-2\right)+2\left(x-3\right)=5\)

\(\Rightarrow3x-6+2x-6=5\)

\(\Rightarrow5x=17\Rightarrow x=\dfrac{17}{5}\)

b) \(\left(2x-8\right)^2-16=0\)

\(\Rightarrow\left(2x-8-4\right)\left(2x-8+4\right)=0\)

\(\Rightarrow\left(2x-12\right)\left(2x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x=12\\2x=4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)

c) \(\left(2x-1\right)^2-\left(4x+1\right)\left(x-3\right)=3\)

\(\Rightarrow4x^2-4x+1-4x^2+12x-x+3=3\)

\(\Rightarrow7x=-1\Rightarrow x=-\dfrac{1}{7}\)

a: Ta có: \(3\left(x-2\right)+2\left(x-3\right)=5\)

\(\Leftrightarrow3x-6+2x-6=5\)

\(\Leftrightarrow5x=17\)

hay \(x=\dfrac{17}{5}\)

b: Ta có: \(\left(2x-8\right)^2-16=0\)

\(\Leftrightarrow\left(2x-4\right)\left(2x-12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

1: =>x^2+4x-21=0

=>(x+7)(x-3)=0

=>x=3 hoặc x=-7

2: =>(2x-5-4)(2x-5+4)=0

=>(2x-9)(2x-1)=0

=>x=9/2 hoặc x=1/2

3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15

=>-9x^2+27x+9x^2+18x+9=15

=>18x=15-9-27=-21

=>x=-7/6

6: =>4x^2+4x+1-4x^2-16x-16=9

=>-12x-15=9

=>-12x=24

=>x=-2

7: =>x^2+6x+9-x^2-4x+32=1

=>2x+41=1

=>2x=-40

=>x=-20

a: \(=\dfrac{4x^3+8x^2-11x+3-\left(x^2-5\right)\left(2x-1\right)-2x^3-5x^2+x+1}{\left(2x-1\right)^3}\)

\(=\dfrac{2x^3+3x^2-10x+4-2x^3+x^2+10x-5}{\left(2x-1\right)^3}\)

\(=\dfrac{4x^2-1}{\left(2x-1\right)^3}=\dfrac{2x+1}{\left(2x-1\right)^2}\)

b: \(=\dfrac{1+x+1-x}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2+2x^2+2-2x^2}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4+4x^4+4-4x^4}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{8+8x^8+8-8x^8}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{32}{1+x^{32}}\)

NM
20 tháng 10 2021

ta có:

undefined

2: \(3x\left(x-4\right)+2x-8=0\)

=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)

=>\(\left(x-4\right)\left(3x+2\right)=0\)

=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)

3: 4x(x-3)+x2-9=0

=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)

=>\(\left(x-3\right)\left(4x+x+3\right)=0\)

=>\(\left(x-3\right)\left(5x+3\right)=0\)

=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)

4: \(x\left(x-1\right)-x^2+3x=0\)

=>\(x^2-x-x^2+3x=0\)

=>2x=0

=>x=0

5: \(x\left(2x-1\right)-2x^2+5x=16\)

=>\(2x^2-x-2x^2+5x=16\)

=>4x=16

=>x=4

NV
26 tháng 12 2020

a. ĐKXĐ: \(-1\le x\le1\)

Đặt \(\sqrt{1+x}+\sqrt{1-x}=t>0\)

\(\Rightarrow t^2=2+2\sqrt{1-t^2}\)

Pt trở thành:

\(t.t^2=8\Leftrightarrow t^3=8\Leftrightarrow t=2\)

\(\Rightarrow\sqrt{1+x}+\sqrt{1-x}=2\)

\(\Leftrightarrow2+2\sqrt{1-x^2}=2\)

\(\Leftrightarrow1-x^2=0\Rightarrow x=\pm1\)

b.

ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)

\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\)

Pt trở thành:

\(t=t^2-4-16\Leftrightarrow...\)