Tìm x,y\(\in\)Z,biết:
(x-1).(xy-5)=5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: (x-6) chia hết cho x-5
=>(x-5)+56 chia hết cho x-5
=>(x-5)-1 chia hết cho x-5
Mà x-1 chia hết cho x-1
=>1 chia hết cho x1
=>x-1 thuộc Ư(1)={1;-1}
=>x thuộc {2;0}
b)
=>x+1 và xy-1 thuộc Ư(3)={1;3;-1;-3}
Ta có bảng kết quả:
x+1 | 1 | 3 | -1 | -3 |
xy-1 | 3 | 1 | -3 | -1 |
x | 0 | 2 | -2 | -4 |
y | Không có | 1 | 1 | 0 |
Vậy (x;y) thuộc {(2;1);(-2;1);(-4;0)}
a. (x + 2) * (y - 5) = -7
<=> (y - 5) = -\(\dfrac{7}{x+2}\)
x ∈ Z => 7 chia hết cho (x + 2)
=> x = 5
<=> y -5 = -1
y = -1 + 5
y = 4
Vậy x = 5 và y = 4
b. (x-1) * (xy-3) = -5
<=> (xy-3) = -\(\dfrac{5}{x-1}\)
x ∈ Z => 5 chia hết cho x-1
=> x =6 ; -4; 2
TH1 : x = 6 => 6y-3
<=> 6y - 3 = -\(\dfrac{5}{6-1}\)
=> 6y - 3 = -1
6y = -1+3
6y = 2
y = 6:2
y = 3
TH2 : x = -4
<=> -4y - 3 = - \(\dfrac{5}{-4-1}\)
<=> -4y - 3 = 1
-4y = 1 + 3
-4y = 4
y = 4 : -4
y = -1
TH3 : x = 2
<=> 2y - 3 = -\(\dfrac{5}{2-1}\)
<=> 2y - 3 = -5
2y = -5 + 3
2y = -2
y = -2 : 2
y = -1
Vậy x =2 và y = -1 hoặc x = -4 và y = -1
xy + 2x - y = 5
<=> x(y + 2) - y - 2 = 5 - 2
<=> x(y + 2) - (y + 2) = 3
<=> (y + 2)(x - 1) = 3
=> y + 2 và x - 1 là ước của 3
=> Ư(3) = { - 3 ; - 1 ; 1 ; 3 }
Nếu x - 1 = - 3 thì y + 2 = - 1 => x = - 2 thì y = - 3
Nếu x - 1 = - 1 thì y + 2 = - 3 => x = 0 thì y = - 5
Nếu x - 1 = 1 thì y + 2 = 3 => x = 2 thì y = 1
Nếu x - 1 = 3 thì y + 2 = 1 => x = 4 thì y = - 1
Vậy ( x;y ) = { ( - 2;- 3 ) ; ( 0 ; - 5 ) ; ( 2 ; 1 ) ; (4 ; - 1 ) }
a Ta có
xy -x-y=-1
=> x(y-1)-(y-1)=0
=> (y-1)(x-1)=0
=> + y-1 =0 và x-1 thỏa mãn với mọi số nguyên
+ x-1=0 và y-1 thỏa mãn với mọi số nguyên
Ta có bảng sau :
x-1 | -5 | -1 | 1 | 5 |
xy-5 | -1 | -5 | 5 | 1 |
xy | 4 | 0 | 10 | 6 |
x | -4 | 0 | 2 | 6 |
y | -1 | \(y\in Z\) | 5 | 1 |
Vậy (x;y) = (-4;-1) ; (0;y) ; (2;5) ; (6;1) thỏa mãn (x-1)(xy-5) = 5
=>x-1 và xy-5 thuộc Ư(5)={1;5;-1;-5}
Ta có bảng kết quả:
x-1 | 1 | 5 | -1 | -5 |
xy-5 | 5 | 1 | -5 | -1 |
x | 2 | 6 | 0 | -4 |
y | 5 | 1 | mọi y | -1 |
LBGT:
Vậy...