K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2015

Áp dụng bấ đẳng thức Bu-nhia-cốp-xki:

\(\left(\sqrt{c}.\sqrt{a-c}+\sqrt{b-c}.\sqrt{c}\right)^2\le\left(c+b-c\right)\left(a-c+c\right)=ab\)

\(\Rightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)

\(\Rightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}-\sqrt{ab}\le0\)

 

20 tháng 9 2019

\(\sqrt{\frac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\frac{\left(a^2+ab+ac+bc\right)\left(b^2+bc+ba+ac\right)}{c^2+ca+cb+ab}}=\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(b+a\right)\left(b+c\right)}{\left(c+a\right)\left(c+b\right)}}=a+b\left(a,b,c>0;a+b+c=1\right)\)

Bạn làm tương tự nha

\(\Rightarrow P=a+b+c+a+b+c=2\left(a+b+c\right)=2\)

30 tháng 12 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{\left(a+c\right)\left(b+c\right)}+\sqrt{\left(a-c\right)\left(b-c\right)}\right)^2\)

\(\le\left(a+c+a-c\right)\left(b+c+b-c\right)\)

\(=2a\cdot2b=4ab=VP^2\)

\(\Rightarrow VT\le VP\) *ĐPCM*

26 tháng 7 2018

Áp dụng bất đẳng thức cô - si cho 2 số không âm ta có :

\(\sqrt{\dfrac{c\left(a-c\right)}{ab}}+\sqrt{\dfrac{c\left(b-c\right)}{ab}}\le\dfrac{1}{2}\left(\dfrac{c}{b}+\dfrac{a-c}{a}\right)+\dfrac{1}{2}\left(\dfrac{c}{a}+\dfrac{b-c}{b}\right)\)

\(\Rightarrow\dfrac{\sqrt{c\left(a-c\right)}}{\sqrt{ab}}+\dfrac{\sqrt{c\left(b-c\right)}}{\sqrt{ab}}\le1\)

\(\Rightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\left(đpcm\right)\)

18 tháng 11 2017

a) Gõ link này nha: http://olm.vn/hoi-dap/question/1078496.html

AH
Akai Haruma
Giáo viên
17 tháng 7 2020

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\([\sqrt{c(a-c)}+\sqrt{c(b-c)}]^2\leq [c+(b-c)][(a-c)+c]=ab\)

\(\Rightarrow \sqrt{c(a-c)}+\sqrt{c(b-c)}\leq \sqrt{ab}\) (đpcm)

Dấu "=" xảy ra khi $a=b=2c$

2 tháng 8 2018

sử dụng bđt bunhia

2 tháng 8 2018

Áp dụng BDT Bu-nhi-a-cốp-xki:

\(\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\le\left(c+b-c\right)\left(a-c+c\right)=ab\\ \Rightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)

Đẳng thức xảy ra khi: \(\dfrac{c}{b-c}=\dfrac{a-c}{c}\)

\(\Rightarrow c^2=\left(b-c\right)\left(a-c\right)\\ \Rightarrow c^2=ab-ac-bc+c^2\\ \Rightarrow ab-ac-bc=0\)

15 tháng 8 2019

Áp dụng bđt Bunhiacopxki :

\(\sqrt{c}\cdot\sqrt{a-c}+\sqrt{c}\cdot\sqrt{b-c}\le\sqrt{\left[\left(\sqrt{c}\right)^2+\left(\sqrt{a-c}\right)^2\right]\left[\left(\sqrt{c}\right)^2+\left(\sqrt{b-c}\right)^2\right]}\)

\(=\sqrt{\left(c+a-c\right)\left(c+b-c\right)}=\sqrt{ab}\) ( đpcm )

Dấu "=" xảy ra \(\Leftrightarrow\frac{c}{a-c}=\frac{c}{b-c}\Leftrightarrow a-c=b-c\Leftrightarrow a=b\)

học giỏi ghê >>