K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2017

x^3 + x^2 + 4 = -2^3 + 2^2 + 4

                     = 0

27 tháng 1 2017

\(x^3+x^2+4=0\Leftrightarrow x^3+2x^2-x^2-2x+2x+4=0\Leftrightarrow x^2\left(x+2\right)-x\left(x+2\right)+2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-x+2\right)=0\)
vì x^2 -x +2 >0 nên \(x+2=0\Rightarrow x=-2\)
Vậy nghiệm phương trình là x=-2

25 tháng 6 2017

10 tháng 10 2019

a) Cách 1: Khai triển HĐT rút gọn được 3 x 2  + 6x + 7 = 0

Vì (3( x 2  + 2x + 1) + 4 < 0 với mọi x nên giải được  x ∈ ∅

Cách 2. Chuyển vế đưa về ( x   +   3 ) 3 =  ( x   - 1 ) 3  Û x + 3 = x - 1

Từ đó tìm được x ∈ ∅

b) Đặt  x 2  = t với t ≥ 0 ta được  t 2  + t - 2 = 0

Giải ra ta được t = 1 (TM) hoặc t = -2 (KTM)

Từ đó tìm được x = ± 1

c) Biến đổi được 

d) Biến đổi về dạng x(x - 2) (x - 4) = 0. Tìm được x{0; 2; 4}

10 tháng 1 2017

(x3 + x2) + (x2 + x) = 0

⇔x2 (x + 1) + x(x + 1) = 0

⇔(x2 + x)(x + 1) = 0

⇔x(x + 1)(x + 1) = 0

⇔x = 0 hoặc x + 1 = 0

⇔x = 0 hoặc x = -1

Vậy tập nghiệm của phương trình là : S = {0; -1}

14 tháng 6 2018

18 tháng 8 2019

b) x 3  - 3 x 2  + 2 = 0

⇔  x 3  -  x 2  - 2 x 2  + 2 = 0

⇔  x 2  (x - 1) - 2( x 2  - 1) = 0

⇔ (x - 1)[ x 2 - 2(x + 1)] = 0

⇔ (x - 1)( x 2 - 2x - 2) = 0

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy phương trình đã cho có tập nghiệm là S = {1; (1 ± 3 )/2}

16 tháng 3 2019

a) Thay x = -2 vào phương trình đã cho ta được:

-8 + 4 – 2m – 4 = 0 ⇔ -2m = 8 ⇔ m = -4

b) Với m = -4, ta có phương trình:

x3 + x2 – 4x – 4 = 0 ⇔ x2(x + 1) – 4(x + 1) = 0

⇔ (x + 1)(x2 – 4) = 0 ⇔ (x + 1)(x – 2)(x + 2) = 0

⇔ x + 1 = 0 hoặc x – 2 = 0 hoặc x + 2 = 0

⇔ x = -1 hoặc x = 2 hoặc x = -2

Tập nghiệm của phương trình: S = {-1; 2; -2}.

19 tháng 1 2019

Ta thấy x = 1 không phải nghiệm của phương trình nên nhân 2 vế của phương trình với x - 1 ta có: 

⇔ x = 1(KTM)

Vậy phương trình đã cho vô nghiệm.

27 tháng 8 2019

5 tháng 3 2017
24 tháng 4 2017

Ta có:  x 3  – 5 x 2 –x +5 = 0 ⇔  x 2 ( x -5) – ( x -5) =0

⇔ (x -5)(x2 -1) =0 ⇔ (x -5)(x -1)(x +1) =0

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy phương trình đã cho có 3 nghiệm :x1 = 5;x2 =1;x3=-1