K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2016

\(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2004^2}\)

\(=1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2004^2}\right)>1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2003.2004}\right)\)

                                                         \(>1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2003}-\frac{1}{2004}\right)\)

\(>1-\left(1-\frac{1}{2004}\right)\)

\(>1-1+\frac{1}{2004}\)

\(>\frac{1}{2004}\left(đpcm\right)\)

24 tháng 5 2016

sao chị không hiểu em ghi cái gì hết

NV
12 tháng 2 2020

Xét tổng:

\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2004^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2003.2004}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2003}-\frac{1}{2004}=1-\frac{1}{2004}\)

\(\Rightarrow1-A>1-\left(1-\frac{1}{2004}\right)=\frac{1}{2004}\) (đpcm)

NV
12 tháng 2 2020

\(2^2=2.2>1.2\Rightarrow\frac{1}{2^2}< \frac{1}{1.2}\)

Tương tự \(\frac{1}{3^2}< \frac{1}{2.3}\) ........