cho B(x)=-x^4-x^2-8.chứng minh b(x) vô nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$x^4-6x^2+15\\=x^4-3x^2-3x^2+9+6\\=x^2(x^2-3)-3(x^2-3)+6\\=(x^2-3)(x^2-3)+6\\=(x^2-3)^2+6\\(x^2-3)^2 \geq 0\\\to (x^2-3)^2+6 \geq 6>0\\\to x^4-6x^2+9$ vô nghiệm
\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{CM vô số nghiệm}\)
\(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)
x^4+x^3+x^2+x+1 = 0
Ta thấy x=1 ko là nghiệm => x khác 1 => x-1 khác 0
=> (x-1).(x^4+x^3+x^2+x+1) = 0
<=> x^5-1=0
<=> x^5=1=1^5
<=> x=1 ( ko tm )
Vậy pt vô nghiệm
Tk mk nha
Ta có:
\(\left(x-4\right)^2\ge0\)
\(\left(x+5\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+\left(x+5\right)^2=0\) khi
\(\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(x+5\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x+5=0\end{matrix}\right.\) => không có giá trị x nào thỏa mãn
=> đa thức vô nghiệm
P(\(x\)) = \(x^4\) + 3\(x^2\) - 4033
P(\(x\)) = \(x^4\) + 2.\(\dfrac{3}{2}\)\(x^2\) + \(\dfrac{9}{4}\) - \(\dfrac{16141}{4}\)
P(\(x\)) = (\(x^2\) + \(\dfrac{3}{2}\))2 - \(\dfrac{16141}{4}\)
P(\(x\)) = 0 ⇔ (\(x^2\) + \(\dfrac{3}{2}\))2 - \(\dfrac{16141}{4}\) = 0
⇒ (\(x^2\) + \(\dfrac{3}{2}\))2 = \(\dfrac{16141}{4}\)
\(x^2\) + \(\dfrac{3}{2}\) = - \(\sqrt{\dfrac{16141}{4}}\) (loại)
\(x^2\) + \(\dfrac{3}{2}\) = \(\sqrt{\dfrac{16141}{4}}\)
\(x^2\) = \(\sqrt{\dfrac{16141}{4}}\) - \(\dfrac{3}{2}\) > 0
\(x\) = \(\mp\) \(\sqrt{\sqrt{\dfrac{16141}{4}}-\dfrac{3}{2}}\)
Vậy việc chứng minh: P(\(x\)) vô nghiệm là không xảy ra
x8-x7+x4-x+1
=( x8-x7) -(x-1)+x4
=x(x-1)-(x-1)+x4
=(x-1)(x-1)+x4
=(x-1)2+x4
mà (x-1)2\(\ge\)0
x4 \(\ge\)0
=> (x-1)2+x4 \(\ge\) 0
Vậy x8-x7+x4-x+1 \(\ge\) 0
=> đa thức trên vô nghiệm
\(B\left(x\right)=x^4-x^2-8=0\left(1\right)\)
\(\text{Đặt: }\) \(x^2=t\left(t\ge0\right)\)
\(\left(1\right)\Leftrightarrow t^2-t-8=0\)
\(\Delta=\left(-1\right)^2-4\cdot8=-31< 0\)
\(\Rightarrow B\left(x\right)\text{vô nghiệm.}\)
Lớp 7 hiểu delta chưa ạ?