Cho a+b+c=4 .CMR (a+b)(b+c)(c+a) >= (abc)3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)\)
\(=27-3(3-a)(3-b)(3-c)\)
\(=27-3[27-9(a+b+c)+3(ab+bc+ac)-abc]\)
\(=27-3[3(ab+bc+ac)-abc]=27-9(ab+bc+ac)+3abc\)
Do đó:
\(A=a^3+b^3+c^3+\frac{15}{4}abc=27-9(ab+bc+ac)+\frac{27}{4}abc(*)\)
Áp dụng BĐT Schur :
\(abc\geq (a+b-c)(b+c-a)(c+a-b)\)
\(\Leftrightarrow abc\geq (3-2a)(3-2b)(3-2c)\)
\(\Leftrightarrow abc\geq 27-18(a+b+c)+12(ab+bc+ac)-8abc\)
\(\Leftrightarrow 9abc\geq 12(ab+bc+ac)-27\)
\(\Leftrightarrow 3abc\geq 4(ab+bc+ac)-9\)
\(\Rightarrow \frac{27}{4}abc\geq 9(ab+bc+ac)-\frac{81}{4}(**)\)
Từ \((*); (**)\Rightarrow A\geq 27-\frac{81}{4}=\frac{27}{4}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)
Lời giải:
Ta có:
\(ab+bc+ac=abc\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Xét \(a^4+b^4-(ab^3+a^3b)=(a-b)(a^3-b^3)\)
\(=(a-b)^2(a^2+ab+b^2)\geq 0\forall a,b> 0\)
\(\Rightarrow a^4+b^4\geq ab^3+a^3b\)
\(\Rightarrow 2(a^4+b^4)\geq (a^3+b^3)(a+b)\)
\(\Rightarrow \frac{a^4+b^4}{ab(a^3+b^3)}\geq \frac{(a^3+b^3)(a+b)}{2ab(a^3+b^3)}=\frac{a+b}{2ab}=\frac{1}{2a}+\frac{1}{2b}\)
Thực hiện tương tự với các phân thức còn lại:
\(\Rightarrow \frac{a^4+b^4}{ab(a^3+b^3)}+\frac{b^4+c^4}{bc(b^3+c^3)}+\frac{c^4+a^4}{ca(c^3+a^3)}\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=3\)
Chuyển vế :
a^4 - a^3 + b^4 - b^3 + c^4 - c^3 >= 0
<=> a^3(a - 1) + b^3(b - 1) + c^3(c - 1) - (a - 1) - (b - 1) - (c - 1) >= 0 (a + b + c = 3)
<=> (a - 1)(a^3 - 1) + (b - 1)(b^3 - 1) + (c - 1)(c^3 - 1) >= 0
<=> (a - 1)^2(a^2 + a + 1) + (b - 1)^2(b^2 + b + 1) + (c -1)^2(c^2 + c + 1) >= 0 (*)
Dễ chứng minh được a^2 + a + 1 > 0
=> (*) đúng
=> ĐPCM
Bạn tham khảo lời giải bài 4 link sau:
Câu hỏi của Bonking - Toán lớp 9 | Học trực tuyến