K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2017

2-x=0 <=>x=2

Áp dụng định lý Bơ-du ta có số dư của phép chia \(Q\left(x\right)=3x^3-x^2+x-1\) cho \(2-x\)là:

\(Q\left(2\right)=3.\left(2\right)^3-\left(2\right)^2+2-1=21\)

28 tháng 9 2018

2 tháng 5 2019

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Lời giải:

Ta có:

$2x^4-3x^3-3x-2=2x^2(x^2-1)-3x(x^2-1)+2x^2-6x-2$

$=(2x^2-3x)(x^2-1)+2(x^2-1)-6x$

$=(2x^2-3x+2)(x^2-1)-6x$

Vậy $2x^4-3x^3-3x-2$ chia $x^2-1$ dư $-6x$

Không có đáp án nào đúng

20 tháng 11 2021

Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)

\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)

Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)

Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)

8 tháng 9 2015

Viết lại cho dễ nhìn là :

\(1+x+x^{19}+x^{199}+x^{1995}=\left(-x\right)\left(1-x^{1994}\right)-x\left(1-x^{198}\right)-x\left(1-x^{18}\right)+4x+`\)do đó chia cho (1 - x2) dư (4x + 1)

4 tháng 9 2017

4x+ ji tiep theo z