K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2021

LG a

3√27−3√−8−3√125273−−83−1253

Phương pháp giải:

Tính từng căn bậc ba rồi thực hiện phép tính

Lời giải chi tiết:

3√27−3√−8−3√125=3√33−3√(−2)3−3√53273−−83−1253=333−(−2)33−533

=3−(−2)−5=3−(−2)−5

=3+2−5=0=3+2−5=0.

LG b

 3√1353√5−3√54.3√4135353−543.43

Phương pháp giải:

Sử dụng các công thức:

3√a.b=3√a.3√ba.b3=a3.b3.

3√ab=3√a3√bab3=a3b3,  với b≠0b≠0.

Lời giải chi tiết:

3√1353√5−3√54.3√4=3√27.53√5−3√54.4135353−543.43=27.5353−54.43

=3√5.3√273√5−3√216=53.27353−2163

=3√27−3√216=273−2163

=3√33−3√63=333−633

=3−6=−3=3−6=−3.

19 tháng 5 2021

a) \sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}=3-(-2)-5=0327383125=3(2)5=0.

b) \dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54} \cdot \sqrt[3]{4}=\sqrt[3]{\dfrac{135}{5}}-\sqrt[3]{54.4}=3-6=-335313535434=35135354.4=36=3.

25 tháng 4 2021

Ta có:

+ 3√512=3√83=8;5123=833=8;

+ 3√−729=3√(−9)3=−9;−7293=(−9)33=−9;

+ 3√0,064=3√0,43=0,4;0,0643=0,433=0,4;

+ 3√−0,216=3√(−0,6)3=−0,6;−0,2163=(−0,6)33=−0,6;

+ 3√−0,008=3√(−0,2)3=−0,2.

25 tháng 4 2021

Đáp án:

( lần lượt như trên nhé!!! Ko viết lại đề)

8 ; - 9 ; 0,4 ; - 0,6 ; - 0,2

23 tháng 4 2021

Rút gọn các biểu thức sau với x≥0x≥0:

a) 2\(\sqrt{3x}\)-4\(\sqrt{3x}\)+27-3\(\sqrt{3x}\)=27-5\(\sqrt{3x}\)

b)3\(\sqrt{2x}\)-5\(\sqrt{8x}\)+7\(\sqrt{18x}\)+28

=3\(\sqrt{2x}\)-10\(\sqrt{2x}\)+21\(\sqrt{2x}\)+28

=14\(\sqrt{2x}\)+28=14(\(\sqrt{2x}\)+2)

23 tháng 4 2021

a) \(2\sqrt{3x}-4\sqrt{3x}+27-3\sqrt{3x}\)

\(=\left(2\sqrt{3x}-4\sqrt{3x}-3\sqrt{3x}\right)+27\)

\(=-5\sqrt{3x}+27\)

17 tháng 5 2021

\(\sqrt{\dfrac{1}{600}}\)=\(\sqrt{\dfrac{1}{10^2\cdot6}}\)=\(\sqrt{\dfrac{1\cdot6}{10^2\cdot6\cdot6}}\)=\(\dfrac{\sqrt{6}}{60}\)

\(\sqrt{\dfrac{11}{540}}\)=\(\sqrt{\dfrac{11\cdot540}{540\cdot540}}\)=\(\dfrac{\sqrt{5940}}{540}\)=\(\dfrac{\sqrt{165}}{90}\)

\(\sqrt{\dfrac{3}{50}}\)=\(\sqrt{\dfrac{3\cdot50}{50\cdot50}}\)=\(\dfrac{\sqrt{150}}{50}\)=\(\dfrac{\sqrt{6}}{10}\)

\(\sqrt{\dfrac{5}{98}}\)=\(\sqrt{\dfrac{5\cdot98}{98\cdot98}}=\dfrac{\sqrt{490}}{98}=\dfrac{\sqrt{10}}{14}\)

\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{3-\sqrt{3}}{9}\)

17 tháng 5 2021

\(\sqrt{\dfrac{1}{600}}=\dfrac{\sqrt{6}}{60}\)

\(\sqrt{\dfrac{11}{540}}=\dfrac{\sqrt{165}}{90}\)

\(\sqrt{\dfrac{3}{50}}=\dfrac{\sqrt{6}}{10}\)

\(\sqrt{\dfrac{5}{98}}=\dfrac{\sqrt{10}}{14}\)

\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{3-\sqrt{3}}{9}\)

25 tháng 4 2021

a) Ta có: 5=353=31255=533=1253

Vì 125>1233125>3123125>123⇔1253>1233   

                        5>3123⇔5>1233

Vậy 5>31235>1233

25 tháng 4 2021

b, Ta có :

+)536=353.6=3125.6=3750+)635=363.5=3216.5=31080+)563=53.63=125.63=7503+)653=63.53=216.53=10803

Vì 750<10803750<31080750<1080⇔7503<10803

                          536<635⇔563<653.

Vậy 536<635563<653.

16 tháng 4 2021

a)  Ta có:

4>3⇔√4>√3⇔2>√3⇔2.2>2.√3⇔4>2√34>3⇔4>3⇔2>3⇔2.2>2.3⇔4>23

Cách khác:

Ta có:  

⎧⎨⎩42=16(2√3)2=22.(√3)2=4.3=12{42=16(23)2=22.(3)2=4.3=12

Vì 16>12⇔√16>√1216>12⇔16>12

Hay 4>2√34>23.

b) Vì 5>4⇔√5>√45>4⇔5>4

⇔√5>2⇔5>2   

⇔−√5<−2⇔−5<−2 (Nhân cả hai vế bất phương trình trên với −1−1)

Vậy −√5<−2−5<−2.


 

17 tháng 4 2021

a, Ta có : \(4=\sqrt{16}\)\(2\sqrt{3}=\sqrt{4.3}=\sqrt{12}\)

Do 12 < 16 hay \(2\sqrt{3}< 4\)

b, Ta có : \(-2=-\sqrt{4}\)

Do \(4< 5\Rightarrow\sqrt{4}< \sqrt{5}\Rightarrow-\sqrt{4}>-\sqrt{5}\)

Vậy \(-2>-\sqrt{5}\)

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

(do xy > 0 (gt) nên đưa thừa số xy vào trong căn để khử mẫu)

#Học tốt!!!

17 tháng 5 2021

\(ab\cdot\sqrt{\dfrac{a}{b}}=a\cdot\sqrt{ab}\)

\(\dfrac{a}{b}\cdot\sqrt{\dfrac{b}{a}}=\dfrac{\sqrt{a\cdot b}}{b}\)

\(\sqrt{\dfrac{1}{b}+\dfrac{1}{b^2}}=\dfrac{\sqrt{b+1}}{b}\)

\(\sqrt{\dfrac{9\cdot a^3}{36\cdot b}}=\dfrac{\sqrt{a^3\cdot b}}{2\cdot b}\)

\(3\cdot x\cdot y\cdot\sqrt{\dfrac{2}{x\cdot y}}=3\cdot\sqrt{2\cdot x\cdot y}\)

14 tháng 4 2021

a) (\(\sqrt{3}\)-1)2=3-2\(\sqrt{3}\)+1= 4-2\(\sqrt{3}\) (ĐPCM)

b) \(\sqrt{4-2\sqrt{3}}\)=\(\sqrt{3}\)-1 >0

Bình phương 2 vế, ta có:

4-2\(\sqrt{3}\)=3-2\(\sqrt{3}\)+1= 4-2\(\sqrt{3}\) (ĐPCM)

21 tháng 5 2021

a)  \(\left(\sqrt{3}-1\right)^2\)=\(\left(\sqrt{3}\right)^2\)- 2\(\sqrt{3}\) +1= 3- 2\(\sqrt{3}\) +1=4-2\(\sqrt{3}\)

b)  \(\sqrt{4-2\sqrt{3}}-\sqrt{3}\) = \(\sqrt{\left(\sqrt{3}-1\right)^2}\) - \(\sqrt{3}\)\(|\sqrt{3}-1|\)-\(\sqrt{3}\)=\(\sqrt{3}\)-1-\(\sqrt{3}\)=-1

 

a) Đúng. Vì √0,0001=√0,012=0,010,0001=0,012=0,01

Vì  VP=√0,0001=√0,012=0,01=VTVP=0,0001=0,012=0,01=VT. 

b) Sai

Vì vế phải không có nghĩa do số âm không có căn bậc hai.

c) Đúng.

Vì: 36<39<4936<39<49  ⇔√36<√39<√49⇔36<39<49

                                 ⇔√62<√39<√72⇔62<39<72

                                 ⇔6<√39<7⇔6<39<7

Hay √39>639>6 và √39<739<7.

d) Đúng. 

Xét bất phương trình đề cho:

                  (4−√13).2x<√3.(4−√13)(4−13).2x<3.(4−13)     (1)(1)

Ta có: 

16>13⇔√16>√1316>13⇔16>13

                       ⇔√42>√13⇔42>13

                       ⇔4>√13⇔4>13

                       ⇔4−√13>0⇔4−13>0

Chia cả hai vế của bất đẳng thức (1)(1) cho số dương (4−√13)(4−13), ta được:

                         (4−√13).2x(4−√13)<√3.(4−√13)(4−√13)(4−13).2x(4−13)<3.(4−13)(4−13)

                        ⇔2x<√3.⇔2x<3.

 Vậy phép biến đổi tương đương trong câu d là đúng. 


 

13 tháng 5 2021

a ) Đúng 

b) Sai vì vế phải không có nghĩa 

c) Đúng 

d) Đúng

28 tháng 5 2021

a) (a+1)(ba+1)(a+1)(ba+1).
b) (xy)(x+y)(x−y)(x+y).

19 tháng 6 2021

\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\left(2+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{2-1}=2\sqrt{2}-2+2-\sqrt{2}=\sqrt{2}\)

\(\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=-\sqrt{5}\)

\(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{2}\)

\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{\left(a-\sqrt{a}\right)\left(1+\sqrt{a}\right)}{1-a}=\dfrac{a+a\sqrt{a}-\sqrt{a}-a}{1-a}=\dfrac{\sqrt{a}\left(a-1\right)}{1-a}=-\sqrt{a}\)

\(\dfrac{p-2\sqrt{p}}{\sqrt{p}-2}=\dfrac{\sqrt{p}\left(\sqrt{p}-2\right)}{\sqrt{p}-2}=\sqrt{p}\)