x5+2x4+3x3+3x2+2x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\dfrac{2x^4-3x^3+4x^2+1}{x^2-1}=\dfrac{2x^4-2x^2-3x^3+3x+6x^2-6-3x+7}{x^2-1}\)
\(=2x^2-3x+6+\dfrac{-3x+7}{x^2-1}\)
Để dư bằng 0 thì -3x+7=0
=>x=7/3
b: \(\dfrac{x^5+2x^4+3x^2+x-3}{x^2+1}\)
\(=\dfrac{x^5+x^3+2x^4+2x^2-x^3-x+x^2+1+2x-4}{x^2+1}\)
\(=x^3+2x^2-x+1+\dfrac{2x-4}{x^2+1}\)
Để đư bằng 0 thì 2x-4=0
=>x=2
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(A\left(x\right)=0.5x^5-2x^4+3x^3+2x-3\)
\(B\left(x\right)=-0.5x^5+6x^4+3x^3+3x^2-x-1\)
b: Bậc 5
Hệ số cao nhất 0,5
Hệ số tự do là -3
c: \(A\left(x\right)+B\left(x\right)=4x^4+6x^3+3x^2+x-4\)
\(A\left(x\right)-B\left(x\right)=x^5-8x^4-3x^2+3x-2\)
=>B(x)-A(x)=-x^5+8x^4+3x^2-3x+2
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)
\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)
\(=10x^2+10x^2\)
\(=20x^2\)
b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)
\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)
\(=-4x^4+9x^3+4x^2-44x\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: f(x) + g(x) – h(x)
= (x5 – 4x3 + x2 – 2x + 1) + (x5 – 2x4 + x2 – 5x + 3) – (x4 – 3x2 + 2x – 5)
= x5 – 4x3 + x2 – 2x + 1 + x5 – 2x4 + x2 – 5x + 3 – x4 + 3x2 - 2x + 5
= (x5 +x5) – (2x4 + x4) – 4x3 + (x2 + x2 + 3x2)- (2x + 5x + 2x) + (1 + 3 + 5)
= (1 + 1)x5 – (2 + 1)x4 – 4x3 + (1 + 1 + 3)x2 - (2 + 5 + 2)x + (1 + 3 + 5)
= 2x5 – 3x4 – 4x3 + 5x2 – 9x + 9
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(2x^4-3x^3-3x^2-2+6x\right):\left(x^2-2\right)=2\left(x^2-\dfrac{3}{2}x+\dfrac{1}{2}\right)\left(x^2-2\right):\left(x^2-2\right)=2x^2-3x+1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
`@`\(P\left(x\right)=3x^5-5x^2+x^4-2x-x^5+3x^4-x^2+x+1\)
\(P\left(x\right)=\left(3x^5-x^5\right)+x^4+\left(-5x^2-x^2\right)+\left(-2x+x\right)+1\)
\(P\left(x\right)=2x^5+x^4-6x^2-x+1\)
`@`\(Q\left(x\right)=-5-3x^5-2x+3x^2-x^5+2x-3x^3-3x^4\)
\(Q\left(x\right)=\left(-3x^5-x^5\right)-3x^4-3x^3+3x^2+\left(2x-2x\right)-5\)
\(Q\left(x\right)=-4x^5-3x^4-3x^3+3x^2-5\)
`@`\(P\left(x\right)+Q\left(x\right)=\left(2x^5+x^4-6x^2-x+1\right)+\left(-4x^5-3x^4-3x^3+3x^2-5\right)\)
\(=-2x^5-2x^4-3x^3-3x^2-x-4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(=\dfrac{2x^4-4x^2-3x^3+6x+x^2-2}{x^2-2}=2x^2-3x+1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(A\left(2\right)=2^5-2\cdot2^4+5\cdot2-3=32-32+10-3=7\)
\(B\left(-1\right)=-\left(-1\right)^5+3\cdot\left(-1\right)^3+5\cdot\left(-1\right)+11=1-3-5+11=4\)
b: Ta có: A(x)+B(x)
\(=x^5-2x^4+5x-3-x^5+3x^3+5x+11\)
\(=-2x^4+3x^3+10x+8\)
Ta có: A(x)-B(x)
\(=x^5-2x^4+5x-3+x^5-3x^3-5x-11\)
\(=2x^5-2x^4-3x^3-14\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(x^5-x^4+3x^3+3x^2-x+1=0\)
\(\Leftrightarrow x^5+x^4-2x^4-2x^3+5x^3+5x^2-2x^2-2x+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4-2x^3+5x^2-2x+1\right)=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1