3^x-3=64
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)
=>\(\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{4}\right)^3=\left(\dfrac{z}{6}\right)^3\)
=>\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)
=>\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)
Đặt \(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}=k\)
=>x=k; y=2k; z=3k
\(x^2+y^2+z^2=14\)
=>\(k^2+4k^2+9k^2=14\)
=>\(14k^2=14\)
=>\(k^2=1\)
=>k=1 hoặc k=-1
TH1: k=1
=>\(x=k=1;y=2k=2\cdot1=2;z=3k=3\cdot1=3\)
TH2: k=-1
=>\(x=k=-1;y=2k=2\cdot\left(-1\right)=-2;z=3k=3\cdot\left(-1\right)=-3\)
b: \(\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\)
=>\(\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{3}\right)^3=\left(\dfrac{z}{4}\right)^3\)
=>\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)
=>x=2k; y=3k; z=4k
\(x^2+2y^2-3z^2=-650\)
=>\(\left(2k\right)^2+2\cdot\left(3k\right)^2-3\cdot\left(4k\right)^2=-650\)
=>\(4k^2+18k^2-3\cdot16k^2=-650\)
=>\(-26\cdot k^2=-650\)
=>\(k^2=25\)
=>\(\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\)
TH1: k=5
=>\(x=2\cdot5=10;y=3\cdot5=15;z=4\cdot5=20\)
TH2: k=-5
=>\(x=2\cdot\left(-5\right)=-10;y=3\cdot\left(-5\right)=-15;z=4\cdot\left(-5\right)=-20\)
1/
$(x-1)^{x+10}=(x-1)^{x+8}$
$\Rightarrow (x-1)^{x+10}-(x-1)^{x+8}=0$
$\Rightarrow (x-1)^{x+8}(x^2-1)=0$
$\Rightarrow (x-1)^{x+8}=0$ hoặc $x^2-1=0$
Nếu $(x-1)^{x+8}=0\Rightarrow x-1=0\Rightarrow x=1$
Nếu $x^2-1=0\Rightarrow x^2=1=1^2=(-1)^2\Rightarrow x=1$ hoặc $x=-1$
Vậy $x=1$ hoặc $x=-1$
2/
$1^3+2^3+3^3+...+10^3=(x+1)^2$
Ta có công thức quen thuộc:
$1^3+2^3+...+n^3=(1+2+...+n)^2=\frac{[n(n+1)]^2}{4}$
Bạn có thể xem cm tại đây:
https://diendantoanhoc.org/topic/81694-t%C3%ADnh-t%E1%BB%95ng-s-13-23-33-n3/
Khi đó:
$1^3+2^3+...+10^3=(x+1)^2$
$\Rightarrow \frac{[10(10+1)]^2}{4}=(x+1)^2$
$\Rightarrow 3025=(x+1)^2$
$\Rightarrow x+1=55$ hoặc $x+1=-55$
$\Rightarrow x=54$ hoặc $x=-56$
a: x^3=7^3
=>x^3=343
=>\(x=\sqrt[3]{343}=7\)
b: x^3=27
=>x^3=3^3
=>x=3
c: x^3=125
=>x^3=5^3
=>x=5
d: (x+1)^3=125
=>x+1=5
=>x=4
e: (x-2)^3=2^3
=>x-2=2
=>x=4
f: (x-2)^3=8
=>x-2=2
=>x=4
h: (x+2)^2=64
=>x+2=8 hoặc x+2=-8
=>x=6 hoặc x=-10
j: =>x-3=2 hoặc x-3=-2
=>x=1 hoặc x=5
k:
9x^2=36
=>x^2=36/9
=>x^2=4
=>x=2 hoặc x=-2
l:
(x-1)^4=16
=>(x-1)^2=4(nhận) hoặc (x-1)^2=-4(loại)
=>x-1=2 hoặc x-1=-2
=>x=3 hoặc x=-1
1) \(\dfrac{1}{27}+a^3=\left(\dfrac{1}{3}+a\right)\left(\dfrac{1}{9}-\dfrac{a}{3}+a^2\right)\)
2) \(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
3) \(=\left(\dfrac{1}{2}x+2y\right)\left(\dfrac{1}{4}x-xy+4y^2\right)\)
4) \(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
5) \(=\left(x^3+1\right)\left(x^6-x^3+1\right)\)
6) \(=\left(x-4\right)\left(x^2+4x+16\right)\)
7) \(=\left(x-5\right)\left(x^2+5x+25\right)\)
8) \(=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)
9) \(=\left(\dfrac{1}{4}x^2-5y\right)\left(\dfrac{1}{16}x^4+\dfrac{5}{4}x^2y+25y^2\right)\)
10) \(=\left(\dfrac{1}{2}x-2\right)\left(\dfrac{1}{4}x^2+x+4\right)\)
11) \(=\left(x+2\right)^3\)
12) \(=\left(x+3\right)^3\)
1.
a) \(2^x=128\)
\(2^x=2^7\)
\(=>x=7\)
b) \(8^{x-1}=64\)
\(8^{x-1}=8^2\)
\(=>x-1=2\)
\(x=2+1\)
\(=>x=3\)
c) \(3+3^x=30\)
\(3^x=30-3\)
\(3^x=27=3^3\)
\(=>x=3\)
d) \(\left(x+2\right)=64\) -> đề có thiếu không vậy?
e) \(3^2.x=3^5\)
\(x=3^5:3^2\)
\(=>x=3^3=27\)
f) \(\left(2x-1\right)^3=343\)
\(\left(2x-1\right)^3=7^3\)
\(=>2x-1=7\)
\(2x=7+1\)
\(2x=8\)
\(x=8:2\)
\(=>x=4\)
\(#Wendy.Dang\)
a,\(2^x\)=128 b,\(8^{x-1}\)=64 c,3+\(3^x\)=30 d,x+2=64
\(2^7\)=128 \(8^{x-1}\)=\(8^2\) \(3^x\)=30-3 x=64-2
=>x=7 =>x-1=2 \(3^x\)=27 x=62
x=2+1=3 \(3^x\)=\(3^3\)
=>x=3
e,\(3^2\).x=\(3^5\) f,(2x-\(1^3\))=343
x=\(3^5\):\(3^2\) 2x=1+343
x=27 2x=344
x=344:2
x=172
\(x^3+1\)
\(=x^3+1^3\)
\(=\left(x+1\right)\left(x^2-x+1\right)\)
______
\(8+x^3\)
\(=2^3+x^3\)
\(=\left(2+x\right)\left(4-2x+x^2\right)\)
______
\(27x^3-64y^3\)
\(=\left(3x\right)^3-\left(4y\right)^3\)
\(=\left(3x-4y\right)\left(9x^2+12xy+16y^2\right)\)
______
\(\dfrac{x^3}{64}-\dfrac{1}{125}\)
\(=\left(\dfrac{x}{4}\right)^3-\left(\dfrac{1}{5}\right)^3\)
\(=\left(\dfrac{x}{4}-\dfrac{1}{5}\right)\left(\dfrac{x^2}{16}+\dfrac{x}{20}+\dfrac{1}{25}\right)\)
x^3+1=(x+1)(x^2-x+1)
x^3+8=(x+2)(x^2-2x+4)
27x^3-64y^3=(3x-4y)(9x^2+12xy+16y^2)
\(\dfrac{x^3}{64}-\dfrac{1}{25}=\left(\dfrac{1}{4}x-\sqrt[3]{\dfrac{1}{5}}\right)\left(\dfrac{1}{16}x^2+\dfrac{1}{4\sqrt[3]{5}}\cdot x+\dfrac{1}{\sqrt[3]{25}}\right)\)
Bài 4:
a, \(x^3+12x^2+48x+64=x^3+4x^2+8x^2+32x+16x+64\)
\(=x^2.\left(x+4\right)+8x.\left(x+4\right)+16.\left(x+4\right)\)
\(=\left(x+4\right).\left(x^2+8x+16\right)=\left(x+4\right).\left(x^2+4x+4x+16\right)\)
\(=\left(x+4\right).\left(x+4\right)^2=\left(x+4\right)^3\)(1)
Thay \(x=6\) vào (1) ta được:
\(\left(6+4\right)^3=10^3=1000\)
Vậy...........
b, \(x^3-6x^2+12x-8=x^3-2x^2-4x^2+8x+4x-8\)
\(=x^2.\left(x-2\right)-4x.\left(x-2\right)+4.\left(x-2\right)\)
\(=\left(x-2\right).\left(x^2-4x+4\right)=\left(x-2\right).\left(x^2-2x-2x+4\right)\)
\(=\left(x-2\right).\left(x-2\right)^2=\left(x-2\right)^3\)(2)
Thay \(x=22\) vào (2) ta được:
\(\left(22-2\right)^3=20^3=8000\)
Vậy.............
Chúc bạn học tốt!!!
Bài 2:
a, \(\left(x+9\right)^3=27=3^3\)
\(\Rightarrow x+9=3\Rightarrow x=-6\)
Vậy.........
b, \(8-12x-x^3+6x^2=-64\)
\(\Rightarrow-\left(x^3-6x^2+12x-8\right)=-64\)
\(\Rightarrow x^3-2x^2-4x^2+8x+4x-8=64\)
\(\Rightarrow x^2.\left(x-2\right)-4x.\left(x-2\right)+4.\left(x-2\right)=64\)
\(\Rightarrow\left(x-2\right).\left(x^2-4x+4\right)=64\)
\(\Rightarrow\left(x-2\right).\left(x^2-2x-2x+4\right)=64\)
\(\Rightarrow\left(x-2\right).\left(x-2\right)^2=64\)
\(\Rightarrow\left(x-2\right)^3=4^3\Rightarrow x-2=4\Rightarrow x=6\)
Vậy............
Chúc bạn học tốt!!!
A. 64 : 16 = 4
B. 210 : 30 = 7
C. 504 : 56 = 9
D. 115 : 23 = 5