K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2021

cho tam giác abc vuông tại a có ab=9cm , ac=12cm.gọi M, N lần lượt là trung điểm của ab,ac

a) tính độ dài mn

b)hỏi tứ giác BMNC là hình j ?vì sao?

26 tháng 10 2021

CHỈ GIÚP VS Ạ

 

a: \(\Leftrightarrow10n^2+25n-16n-40+43⋮2n+5\)

\(\Leftrightarrow2n+5\in\left\{1;-1;43;-43\right\}\)

hay \(n\in\left\{-2;-3;19;-24\right\}\)

b: \(\Leftrightarrow7n^2+9n-4⋮3n+5\)

\(\Leftrightarrow21n^2+27n-12⋮3n+5\)

\(\Leftrightarrow21n^2+35n-8n-\dfrac{40}{3}+\dfrac{4}{3}⋮3n+5\)

\(\Leftrightarrow3n+5\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{-2;-1;-3\right\}\)

18 tháng 4 2016

. Mình dùng quy nạp nha bạn ^^  10n – 9n – 1 chia hết cho 27 (*)

. Đặt \(A=\)10n  - 9n -1 

. Với n = 0, ta có: A = 100-9.0-1=0 chia hết cho 27

. Giả sử với n=k \(\left(k\varepsilon N\right)\) thì mệnh đề (*) đúng, tức là 10k-9k-1 chia hết cho 27

. Với n=k+1, ta có: A=10(k+1)-9(k+1)-1 = 10k.10-9k-9-1 = 10k-9k-1 + 9.10k-10

. Ta thấy 10k-9k-1 chia hết cho 27(cmt) để A chia hết cho 27 thì ta cần cm 9.10k-10 chia hết cho 27

. Xét 9.10k-10, ta có: 9.10k-10 = 90(10k-1-1) = 90.(10-1).M ( M là 1 đa thức)

= 90.9.M chia hết cho 27  

. Vậy A chia hết cho 27 =))

10 tháng 12 2021

ủa cái cuối là seo

 

12 tháng 10 2020

Với n=1 => \(10^1-9.1-1=0\) chia hết cho 81

Giả sử \(10^k-9k-1\) chia hết cho 81

Ta cần c/m \(10^{k+1}-9\left(k+1\right)-1\) chia hết cho 81

\(10^{k+1}-9k-1=10.10^k-9k-9-1=\)

\(=\left(10^k-9k-1\right)+9.\left(10^k-1\right)\)

Ta có \(10^k-9k-1\) chia hết cho 81

Ta có \(9\left(10^k-1\right)=9x999....99\) (k chữ số 9)\(=9.9\left(1111...111\right)=81.1111...11\)  (k chữ số 1) chia hết cho 81

\(\Rightarrow10^{k+1}-9\left(k+1\right)-1\) chia hết cho 81

\(\Rightarrow10^n-9n-1\) chia hết cho 81 với mọi n

17 tháng 8 2018

đặt M là n^3 -9n^2+2n.

TH1 : n có dạng 2k => M chia hết cho 2 (bạn  tự cm)

TH2 ; n có dạng 2k+1 => M = (2k+1)^3-9(2k+1)^2+2n

=8k^3+6k+12k^2+1-9(4k^2+4k+1)+2n = ... => M chia hết cho 2 với mọi n (1)

Xét n có dạng 3k => M chia hết cho 3

Xét n có dạng 3k+1 => n^3+2n=(3k+1)^3+2(3k+1)=27k^3+9k+27k^2+6k+3 chia hết cho 3 mà 9n^2 cũng chia hết cho 3 => M chia hết cho 3

Tương tự bạn xét n =3k+2....

=> M chia hết cho 3 vs mọi n (2)

Từ (1) (2) => M chia hết cho 6

17 tháng 8 2018

còn cách lm khác k bạn?