K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 10 2022

Lời giải:
$M=1+2+2^2+2^3+...+2^{20}$

$2M=2+2^2+2^3+2^4+...+2^{21}$

$\Rightarrow 2M-M=(2+2^2+2^3+2^4+...+2^{21})-(1+2+2^2+2^3+...+2^{20})$

$=2^{21}-1=4.2^{19}-1< 4.2^{19}< 5.2^{19}$

Hay $M< 5.2^{19}$

14 tháng 10 2023

\(A=2+2^2+...+2^{20}\)

\(2A=2^2+2^3+...+2^{21}\)

\(2A-A=2^2+2^3+...+2^{21}-2-2^2-...-2^{20}\)

\(A=2^{21}-2\)

___________

\(B=5+5^2+...+5^{50}\)

\(5B=5^2+5^3+...+5^{51}\)

\(5B-B=5^2+5^3+...+5^{51}-5-5^2-...-5^{50}\)

\(4B=5^{51}-5\)

\(B=\dfrac{5^{51}-5}{4}\)

___________

\(C=1+3+3^2+...+3^{100}\)

\(3C=3+3^2+...+3^{101}\)

\(3C-C=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}\)

\(2C=3^{101}-1\)

\(C=\dfrac{3^{101}-1}{2}\)

14 tháng 10 2023

2A= 2(2+22+23+...+219+220)

2A= 22+23+24+...+220+221

2A-A=(22+23+24+...+220+221)-(2+22+23+...+219+220)

A=221-2

Vậy A=221-2

Làm tương tự nhee

21 tháng 11 2021

A=\((1+2)+\left(2^2+2^3\right)+...+\left(2^{19}+2^{20}\right)\)

A=\(3.1+2^2\left(1+2\right)+...+2^{19}\left(1+2\right)\)

A=\(3.1+3.2^2+...+3.2^{19}\)

A=\(3\left(1+2^2+...+2^{19}\right)\)\(⋮3\)

Vậy A\(⋮3\)

21 tháng 11 2021

A=(1+2)+(22+23)+...+(219+220)(1+2)+(22+23)+...+(219+220)

A=3.1+22(1+2)+...+219(1+2)3.1+22(1+2)+...+219(1+2)

A=3.1+3.22+...+3.2193.1+3.22+...+3.219

A=3(1+22+...+219)3(1+22+...+219)⋮3⋮3

NÊN  A⋮3

13 tháng 1 2017

A = 2 + 22 + 23 + 24 + ... + 219 + 220

A = (2 + 22) + (23 + 24) +... + (219 + 220)

A = 2.(1+2) + 23.(1 + 2) +... + 219.(l + 2)

A = 2.3 + 23.3 +...+ 219.3 Do đó A chia hết cho 3

8 tháng 1 2021

do đó A chia hết cho 3

\(2A=2^1+2^2+...+2^{20}\)

\(\Leftrightarrow2A-A=2^1+2^2+...+2^{20}-2^0-...-2^{19}\)

\(\Leftrightarrow A=2^{20}-1\)

Vậy: A và B là hai số tự nhiên liên tiếp

18 tháng 2 2022

Cảm ơn nhé

 

13 tháng 11 2023

Sửa đề: \(A=2+2^2+2^3+2^4+...+2^{19}+2^{20}\)

=>\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{19}\right)⋮3\)

a: Tổng các số hạng là:

\(\dfrac{\left(220+1\right)\cdot220}{2}=24310\)

Ta có: A+1=2x

\(\Leftrightarrow2x=24311\)

hay \(x=\dfrac{24311}{2}\)

6 tháng 11 2020

Áp dụng hàng đơn vị , chia từng cặp , như vậy mỗi cặp có hàng đơn vị sẽ có dạng 1 + 2 + 3 + 4 + ..... + 10 = 55 và sẽ chia hết cho 5 .

Vậy M hoàn toàn chia hết cho 5 .

Tưởng ghi kiểu 2^1 + 2^2 + 2^3 + ... + 2^20 chứ ai dè ra đề bài dễ quá ta XD

23 tháng 10 2024

A=1+2+3+...+2020+2021

A=(1+2021)[(2021-1):1+1]:2

A=2043231