K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

link nè bạn http://text.123doc.org/document/605050-cac-bai-toan-lien-quan-den-tinh-toan-va-chung-minh-trong-da-giac.htm

k mk nhé các bạn thanks

Xét ΔABE vuông tại E và ΔACF vuông tại F có 

BE=CF

\(\widehat{ABE}=\widehat{ACF}\)

Do đó: ΔABE=ΔACF

Suy ra: AB=AC(1)

Xét ΔBFC vuông tại F và ΔBHA vuông tại H có

FC=HA

\(\widehat{BCF}=\widehat{BAH}\)

Do đó: ΔBFC=ΔBHA

Suy ra: BC=BA(2)

TỪ (1) và (2) suy ra AB=AC=BC

hay ΔABC can tại A

18 tháng 5 2022
29 tháng 8 2019

A B C D E I

Gỉa sử ngũ giác ABCDE thảo mãn điều kiện bài toán .Tam giác ABCD và tam giác ECD  có \(S_{BCD}=S_{ECD}=1\), đáy CD chung nên các đường cao hạ từ B và E xuống CD bằng nhau \(\Rightarrow EB//CD\)

Tương tự ta có : \(AC//ED\) , \(BD//AE\) , \(CE//AB\)\(DA//BC\)

Gọi \(I=EC\Omega BC\Rightarrow\)ABIE là hình bình hành 

\(\Rightarrow S_{IBE}=S_{ABE}=1\). Đặt \(S_{ICD}=x< 1\)

\(\Rightarrow S_{IBC}=S_{BCD}-S_{ICD}=1-x=S_{BCD}-S_{ICD}=S_{IED}\)

Lại có : \(\frac{S_{ICD}}{S_{IDE}}=\frac{IC}{IE}=\frac{S_{IBC}}{S_{IBE}}\)HAY \(\frac{x}{1-x}=\frac{1-x}{1}\Rightarrow x^2-3x+1=0\)

\(\Rightarrow x=\frac{3\pm\sqrt{5}}{2}\)do x < 1  \(\Rightarrow x=\frac{3-\sqrt{5}}{2}\)

Vậy \(S_{IED}=\frac{\sqrt{5}-1}{2}\). Do đó \(S_{ABCDE}=S_{EAB}+S_{EBI}+S_{BCD}+S_{IED}=3+\frac{\sqrt{5}-1}{2}=\frac{5+\sqrt{5}}{2}\left(đvđt\right)\)

Chúc bạn học tốt !!!

W
15 tháng 4 2020

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiihhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhgggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggcccccccccccccccccccccccccccccccccccccccc

18 tháng 11 2016

Dễ thấy AB=BC=CD=DE

\(ABC\ge CDE=>AC\ge CE\)

Tam giác ACE có \(AC\ge CE=>AEC\ge CAE\left(1\right)\)

\(ABC\ge CDE=>\frac{180^0-B}{2}\le\frac{180^0-D}{2}=>BAC\le CED=>CED\ge BAC\left(2\right)\)

Cộng theo vế (1) và (2)

\(AEC+CED\ge CAE+BAC=>E\ge A,mà.E\le A=>E=A\)

Vậy \(A=B=C=D=E\),mà ngũ giác ABCDE có các cạnh = nhau nên là ngũ giác đều

17 tháng 8 2016

Hình vẽ: Gọi gia điểm của AC và BD là F.

CM AEDF là hình bình hành từ đó suy ra SADE=SADF=1.SADE=SADF=1.

Đặt SBFC=x⇒SCDF=1−x.SBFC=x⇒SCDF=1−x.

CM ΔBFCΔBFC đồng dạng với ΔDFA.ΔDFA.

Tìm được SCDF=−1+√52.SCDF=−1+52.

⇒So=3.618033989dm2⇒So=3.618033989dm2.

17 tháng 8 2016

Giả sử ngũ giác \(ABCDE\) thỏa mãn đk bài toán

Xét \(\Delta BCD\)Và \(ECD\)và \(S_{BCD}=S_{ECD}\)đáy \(CD\)chung, các đường cao hạ từ \(B\)và \(E\)xuống \(CD\) bằng nhau => \(EB\)\(CD\),Tương tự \(AC\)//\(ED\) ,\(BD\)\(AE\), \(CE\)\(AB\), \(DA\)\(BC\)

Gọi \(I\) \(=EC\)\(BC\)=> \(ABIE\)là hình bình hành

=> \(S_{IBE}=S_{ABE}=1\)Đặt\(S_{ICD}=x< 1\)

=> SIBC = SBCD - SICD = 1-x = SECD - SICD = SIED

Lại có: \(\orbr{\begin{cases}S_{ICD}=IC=S_{IBC}\\S_{IDE}=IE=S_{IBE}\end{cases}}\)Hay \(\orbr{\begin{cases}x\\1-x\end{cases}}\)\(=\orbr{\begin{cases}1-x\\1\end{cases}}\)

=> x2-3x+ 1 = 0 => x =\(\frac{3+5}{2}\)Do x<1 => x=\(\frac{3-5}{2}\)

Vậy \(S_{IBE}=\frac{5-1}{2}\)

Do đó SABCDE = SEAB + SEBI + SBCD + SIED

\(=3+\frac{5-1}{2}=\frac{5+5}{2}=5\)