K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 10 2022

\(y=\dfrac{-x^2+mx-2}{x+1}\)

\(y'=\dfrac{\left(-2x+m\right)\left(x+1\right)-\left(-x^2+mx-2\right)}{\left(x+1\right)^2}=\dfrac{-x^2-2x+m+2}{\left(x+1\right)^2}\)

Hàm nghịch biến trên các khoảng xác định khi:

\(-x^2-2x+m+2\le0;\forall m\)

\(\Leftrightarrow\Delta'=1+\left(m+2\right)\le0\)

\(\Rightarrow m\le-3\)

24 tháng 5 2018

Đáp án đúng : C

12 tháng 11 2023

a: ĐKXĐ: x<>m

=>TXĐ: D=R\{m}

\(y=\dfrac{mx-2m-3}{x-m}\)

=>\(y'=\dfrac{\left(mx-2m-3\right)'\cdot\left(x-m\right)-\left(mx-2m-3\right)\left(x-m\right)'}{\left(x-m\right)^2}\)

\(=\dfrac{m\left(x-m\right)-\left(mx-2m-3\right)}{\left(x-m\right)^2}\)

\(=\dfrac{mx-m^2-mx+2m+3}{\left(x-m\right)^2}=\dfrac{-m^2+2m+3}{\left(x-m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì \(y'>0\forall x\in TXĐ\)

=>\(\dfrac{-m^2+2m+3}{\left(x-m\right)^2}>0\)

=>\(-m^2+2m+3>0\)

=>\(m^2-2m-3< 0\)

=>(m-3)(m+1)<0

TH1: \(\left\{{}\begin{matrix}m-3>0\\m+1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>3\\m< -1\end{matrix}\right.\)

=>\(m\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}m-3< 0\\m+1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>-1\\m< 3\end{matrix}\right.\)

=>-1<m<3

b: TXĐ: D=R\{m}

\(y=\dfrac{mx-4}{x-m}\)

=>\(y'=\dfrac{\left(mx-4\right)'\left(x-m\right)-\left(mx-4\right)\left(x-m\right)'}{\left(x-m\right)^2}\)

\(=\dfrac{m\left(x-m\right)-\left(mx-4\right)}{\left(x-m\right)^2}\)

\(=\dfrac{mx-m^2-mx+4}{\left(x-m\right)^2}=\dfrac{-m^2+4}{\left(x-m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì \(\dfrac{-m^2+4}{\left(x-m\right)^2}>0\)

=>\(-m^2+4>0\)

=>\(-m^2>-4\)

=>\(m^2< 4\)

=>-2<m<2

12 tháng 11 2023

a: ĐKXĐ: x<>-m

=>TXĐ: D=R\{-m}

\(y=\dfrac{mx-2m+15}{x+m}\)

=>\(y'=\dfrac{\left(mx-2m+15\right)'\left(x+m\right)-\left(mx-2m+15\right)\left(x+m\right)'}{\left(x+m\right)^2}\)

\(=\dfrac{m\left(x+m\right)-mx+2m-15}{\left(x+m\right)^2}\)

\(=\dfrac{m^2+2m-15}{\left(x+m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định là \(y'>0\forall x\in TXĐ\)

=>\(\dfrac{m^2+2m-15}{\left(x+m\right)^2}>0\)

=>\(m^2+2m-15>0\)

=>(m+5)(m-3)>0

TH1: \(\left\{{}\begin{matrix}m+5>0\\m-3>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>3\\m>-5\end{matrix}\right.\)

=>m>3

TH2: \(\left\{{}\begin{matrix}m+5< 0\\m-3< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< -5\\m< 3\end{matrix}\right.\)

=>m<-5

b: TXĐ: D=R\{-m}

\(y=\dfrac{mx+4m}{x+m}\)

=>\(y'=\dfrac{\left(mx+4m\right)'\left(x+m\right)-\left(mx+4m\right)\left(x+m\right)'}{\left(x+m\right)^2}\)

\(=\dfrac{m\left(x+m\right)-mx-4m}{\left(x+m\right)^2}\)

\(=\dfrac{mx+m^2-mx-4m}{\left(x+m\right)^2}=\dfrac{m^2-4m}{\left(x+m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì \(y'>0\forall x\)

=>\(\dfrac{m^2-4m}{\left(x+m\right)^2}>0\)

=>\(m^2-4m>0\)

=>\(m\left(m-4\right)>0\)

TH1: \(\left\{{}\begin{matrix}m>0\\m-4>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>0\\m>4\end{matrix}\right.\)

=>m>4

TH2: \(\left\{{}\begin{matrix}m< 0\\m-4< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< 0\\m< 4\end{matrix}\right.\)

=>m<0

9 tháng 9 2018

27 tháng 2 2018

Đáp án C

Ta có y ' = 2 − m x + 2 2 .  Hàm số đồng biến trên từng khoảng xác định y ' > 0 , ∀ x ∈ D ⇔ 2 − m > 0 ⇔ m < 2 . 

NV
23 tháng 4 2021

\(y'=\dfrac{-2m-1}{\left(x-2\right)^2}\)

\(y'< 0\) với mọi x thuộc TXĐ \(\Leftrightarrow-2m-1< 0\Leftrightarrow m>-\dfrac{1}{2}\)

24 tháng 9 2018

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Để hàm số tăng trên từng khoảng xác định thì y’ > 0 <=> m > 0.

Chọn A

6 tháng 6 2017

Đáp án A

Ta có  y ' = − m + 1 x − 1 2

hàm số đồng biến trên từng khoảng xác định của nó  ⇔ y ' > 0 ⇔ − m − 1 > 0 ⇔ m < − 1

15 tháng 5 2017

3 tháng 1 2018

Đáp án D

Ta có y ' = 1 − m x + 1 2  

Để hàm số đồng biến trên từng khoảng xác định

⇔ y ' > 0 , ∀ x ∈ D = ℝ \ ± 1 ⇒ 1 − m > 0 ⇔ m < 1