Tìm giá trị nhỏ nhất của biểu thức
B= 4x2 -2x + 5
Mn giúp mình với a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
a) Ta có: \(\left|x-2\right|\ge0\forall x\)
\(\Leftrightarrow\left|x-2\right|+15\ge15\forall x\)
Dấu '=' xảy ra khi x=2
b) Ta có: \(\left|x-5\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-5\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-5\right|-4\ge-4\forall x\)
Dấu '=' xảy ra khi x=5
B=|2x+4|+|6-2x|>=|2x+4+6-2x|=10
Dấu = xảy ra khi (2x+4)(2x-6)<=0
=>-2<=x<=3
Bài 1:
\(A=x^2+6x+9+x^2-10x+25\)
\(=2x^2+4x+34\)
\(=2\left(x^2+2x+17\right)\)
\(=2\left(x+1\right)^2+32>=32\forall x\)
Dấu '=' xảy ra khi x=-1
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
a,Ta có B = x2-x+x = x2
Mà x2 ≥ 0 với ∀ x.Dấu ''='' xảy ra <=> x=0
Vậy Min B = 0 tại x = 0
b,Ta có 4x-x2+3 = -x2+4x-4+7
= -(x2-4x+4)+7
= -(x-2)2+7
Mà (x-2)2 ≥ 0 với ∀ 0 => -(x-2)2 ≤ 0 => -(x-2)2+7 ≤ 7
Dâu ''='' xảy ra <=> -(x-2)2 = 0 <=> x-2 = 0 <=> x=2
Vậy Max c = 7 tại x = 2.
c,Ta có 2x-2x2-5 = -x2+2x-1-x2-4
= -(x-1)2-x2-4
Mà (x-1)2 ≥ 0 => -(x-1)2 ≤ 0
x2 ≥ 0 => -x2 ≤ 0
Ta có D đạt GTLN <=> -(x-1)2 = 0 hoặc -x2 = 0
-Xét -(x-1)2 = 0 <=> x = 1. Khi đó ta có D = -5
-Xét -x2 = 0 <=> x = 0. Khi đó ta có D = -5
Vậy Max D = -5 tại x = 0 hoặc x = 1
\(\text{x}^2+y^2-\text{x}+4y+5=\left(\text{x}^2-\text{x}+\frac{1}{4}\right)+\left(y^2+4y+4\right)+\frac{3}{4}=\left(\text{x}-\frac{1}{2}\right)^2+\left(y+2\right)^2+\frac{3}{4}\)
\(\ge0+0+\frac{3}{4}=\frac{3}{4}\).Dâu"=" xayr ra khi:
\(\Leftrightarrow\hept{\begin{cases}\text{x}-\frac{1}{2}=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\text{x}=\frac{1}{2}\\y=-2\end{cases}}\)
`B=4x^2-2x+5=4x^2-2.2x.1/2+1/4+19/4=(2x-1/2)^2+19/4`
Vì \((2x-1/2)^2 \ge 0<=>(2x-1/2)^2+19/4 \ge 19/4\)
Hay \(B \ge 19/4\)
Dấu "`=`" xảy ra `<=>(2x-1/2)^2=0<=>2x-1/2=0<=>x=1/4`