Giải pt: (2x-2)3= 64
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
PT này bạn tham khảo công thức Cardano tìm nghiệm pt bậc 3:
https://www.mathvn.com/2021/08/cong-thuc-cardano-tim-nghiem-cua-phuong.html
Nghiệm là \(x=\frac{1}{3}(-1+\sqrt[3]{\frac{1}{2}(79-9\sqrt{77})}+\sqrt[3]{\frac{1}{2}(79+9\sqrt{77})})\)
\(2x^2\left(2x^2+3\right)=2-x^2\)
Đặt \(x^2=a;a\ge0\)
`->` pt trở thành:
`<=>2a(2a+3)=2-a`
`<=>4a^2+7a-2=0`
\(\Leftrightarrow\left[{}\begin{matrix}a=\dfrac{1}{4}\left(tm\right)\\a=-2\left(ktm\right)\end{matrix}\right.\)
`=>`\(x=\pm\sqrt{\dfrac{1}{4}}=\pm\dfrac{1}{2}\)
Vậy \(S=\left\{\pm\dfrac{1}{2}\right\}\)
\(\Leftrightarrow4x^4+6x^2-2+x^2=0\)
\(\Leftrightarrow4x^4+5x^2-2=0\)(1)
Đặt \(x^2=a\left(a>=0\right)\)
(1) trở thành \(4a^2+5a-2=0\)(2)
\(\text{Δ}=5^2-4\cdot4\cdot\left(-2\right)=25+32=57>0\)
Do đó: Phương trình (2) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}a_1=\dfrac{-5-\sqrt{57}}{8}\left(loại\right)\\a_2=\dfrac{-5+\sqrt{57}}{8}\left(nhận\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\pm\sqrt{\dfrac{\sqrt{57}-5}{8}}\)
\(Pt\Leftrightarrow x^6+\left(x^3-y\right)^2=64\)
\(\Rightarrow x^6\le64\)
\(\Rightarrow-2\le x\le2\)
Mà x nguyên nên \(x\in\left\{-2;-1;0;1;2\right\}\)
Thế vào tìm được y -> làm nốt
a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)
TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)
TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)
b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)
c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)
\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)
\(ĐKXĐ:x\ge\frac{1}{2}\)
Phương trình đã cho tương đương :
\(4.\left(x^2+1\right)+3.x.\left(x-2\right).\sqrt{2x-1}=2x^3+10x\)
\(\Leftrightarrow3x\left(x-2\right)\sqrt{2x-1}=2x^3-8x^2+10x-4\)
\(\Leftrightarrow3x.\left(x-2\right).\sqrt{2x-1}=2.\left(x-2\right).\left(x-1\right)^2\) (1)
Dễ thấy \(x=2\) là một nghiệm của (1). Xét \(x\ne2\). Khi đó ta có :
\(3x.\sqrt{2x-1}=2.\left(x-1\right)^2\)(*)
Đặt \(\sqrt{2x-1}=a\left(a\ge0\right)\Rightarrow-a^2=1-2x\)
Khi đó pt (*) có dạng :
\(3x.a=2.\left(x^2-a^2\right)\)
\(\Leftrightarrow2x^2-3xa-2a^2=0\)
\(\Leftrightarrow2x^2-4ax+xa-2a^2=0\)
\(\Leftrightarrow2x.\left(x-2a\right)+a.\left(x-2a\right)=0\)
\(\Leftrightarrow\left(x-2a\right)\left(a+2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2a=x\\a=-2x\end{cases}}\)
+) Với \(2a=x\Rightarrow2\sqrt{2x-1}=x\left(x\ge0\right)\)
\(\Leftrightarrow x^2=4.\left(2x-1\right)\)
\(\Leftrightarrow x^2-8x+4=0\)
\(\Leftrightarrow x=4\pm2\sqrt{3}\) ( Thỏa mãn )
+) Với \(a=-2x\Rightarrow\sqrt{2x-1}=-2x\left(x\le0\right)\)
\(\Leftrightarrow4x^2=2x-1\)
\(\Leftrightarrow4x^2-2x+1=0\) ( Vô nghiệm )
Vậy phương trình đã cho có tập nghiệm \(S=\left\{4\pm2\sqrt{3},2\right\}\)
\(5x-4\left(6x+18-x^2-3x\right)=\left(12-8x-6x+4x^2\right)+2\)
\(\Leftrightarrow5x-4\left(-x^2+3x+18\right)=\left(4x^2-14x+12\right)+2\)
\(\Leftrightarrow4x^2-7x-72=4x^2-14x+14\Leftrightarrow7x=86\Leftrightarrow x=\dfrac{86}{7}\)
Ta có: \(\sqrt{x^2+2x+3}+\sqrt{x^2+x+2}=2x+2\)
Bình phương 2 vế ta có:
\(2\sqrt{\left(x^2+2x+3\right)\left(x^2+x+2\right)}=4\left(x+1\right)^2-x^2-2x-3-x^2-x-2\) (\(x\ge-1\))
\(\Leftrightarrow2\sqrt{\left(x^2+2x+3\right)\left(x^2+x+2\right)}=4x^2+8x+4-2x^2-3x-5\)
\(\Leftrightarrow2\sqrt{\left(x^2+2x+3\right)\left(x^2+x+2\right)}=2x^2+5x-1\)\(\Leftrightarrow2\sqrt{\left(x^2+2x+3\right)\left(x^2+x+2\right)}=2x^2+5x-1\)
Bình phương 2 vế, ta được:
\(4\left(x^2+2x+3\right)\left(x^2+x+2\right)=\left(2x^2+5x-1\right)^2\) ( ĐK:\(\left[{}\begin{matrix}x\le\dfrac{-5-\sqrt{33}}{4}\\x\ge\dfrac{-5+\sqrt{33}}{4}\end{matrix}\right.\))
\(\Leftrightarrow4\left(x^4+x^3+2x^2+2x^3+2x^2+4x+3x^2+3x+6\right)=4x^4+20x^3+21x^2-10x+1\)
\(\Leftrightarrow4x^4+4x^3+8x^2+8x^3+8x^2+16x+12x^2+12x+24=4x^4+20x^3+21x^2-10x+1\)\(\Leftrightarrow-8x^3+7x^2+38x+23=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{23}{8}\\x=-1\left(loai\right)\end{matrix}\right.\)
Vậy nghiệm của PT là \(x=\dfrac{23}{8}\)
ĐKXĐ: \(x\notin\left\{-3;1\right\}\)
Ta có: \(\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}-\frac{2x}{x-1}\)
\(\Leftrightarrow\frac{\left(2x-5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)
Suy ra: \(\left(2x-5\right)\left(x-1\right)-2x\left(x+3\right)=4\)
\(\Leftrightarrow2x^2-2x-5x+5-2x^2-6x=4\)
\(\Leftrightarrow-13x+5=4\)
\(\Leftrightarrow-13x=4-5=-1\)
hay \(x=\frac{1}{13}\)(nhận)
Vậy: \(S=\left\{\frac{1}{13}\right\}\)
\(\left(2x-2\right)^3=6^4\Leftrightarrow\sqrt[3]{2x-2}=\sqrt[3]{6^4}\\ \Leftrightarrow2x-2=6\sqrt[3]{6}\\ \Rightarrow x=\dfrac{6\sqrt[3]{6}+2}{2}=3\sqrt[3]{6}+1\)
Đs...