3x4²-2x3²
Các bạn giúp mình nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=1.2+2.3+3.4+...+x.\left(x-1\right)\)
\(\Rightarrow3C=1.2.3+2.3.3+3.4.3+...+x.\left(x-1\right).3\)
\(\Rightarrow3C=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+x.\left(x-1\right).\left[\left(x+1\right)-\left(x-2\right)\right]\)
\(\Rightarrow3C=\left(1.2.3-0.12\right)+\left(2.3.4-1.2.3\right)+\left(3.4.5-2.3.4\right)+...+\left[x.\left(x-1\right)\left(x+1\right)-x.\left(x-1\right)\left(x-2\right)\right]\)
\(\Rightarrow3C=-0.1.2+x.\left(x-1\right)\left(x+1\right)\)
\(\Rightarrow3C=x.\left(x-1\right)\left(x+1\right)\)
\(\Rightarrow C=\dfrac{x.\left(x-1\right)\left(x+1\right)}{3}\)
3C=1x2x3+2x3x3+3x4x3+...+Xx(X+1)=
=1x2x3+2x3x(4-1)+3x4x(5-2)+...+Xx(X+1)[(X+2)-(X-1)]=
=1x2x3-1x2x3+2x3x4-2x3x4+3x4x5-...-(X-1)xXx(X+1)+Xx(X+1)x(X+2)=
=Xx(X+1)(X+2)
Bài 1:
Đặt \(A=\frac{2}{1x2}+\frac{2}{2x3}+\frac{2}{3x4}+...+\frac{2}{18x19}+\frac{2}{19x20}\)
\(\frac{A}{2}=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{18x19}+\frac{1}{19x20}\)
\(\frac{A}{2}=\frac{2-1}{1x2}+\frac{3-2}{2x3}+\frac{4-3}{3x4}+...+\frac{19-18}{18x19}+\frac{20-19}{19x20}\)
\(\frac{A}{2}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}=\frac{19}{20}\)
\(A=\frac{2x19}{20}=\frac{19}{10}\)
Bài 2:
Đặt \(B=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{8x9}+\frac{1}{9x10}\)
Làm tương tự câu 1 có \(B=1-\frac{1}{10}=\frac{9}{10}\)
\(Bx100=\frac{9}{10}x100=90\)
=> \(\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]:\frac{1}{2}=1\)
=> \(\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]=\frac{1}{2}\)
=> \(x+\frac{206}{100}=\frac{5}{2}:\frac{1}{2}=5\Rightarrow x=5-\frac{206}{100}=\frac{294}{100}=\frac{147}{50}\)
Bài làm:
\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{9.10}\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{10-9}{9.10}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{10}\right)=2.\frac{4}{10}=\frac{4}{5}\)
\(A=\frac{1}{2.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{50}\)
\(\Rightarrow A=\frac{12}{25}\)
Vậy \(A=\frac{12}{25}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{14.15}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{14}-\frac{1}{15}\)
\(A=1-\frac{1}{15}\)
\(A=\frac{14}{ }15\)
= 1/2-1/3+1/3-1/4+1/4-1/5+.........+ 1/19-1/20
= 1/2-1/20
= 9/20
ok bn
A=1*2+2*3+...+2014*2015
3A=1*2*3+2*3*(4-1)+...+2014*2015*(2016-2013)
3A=1*2*3+2*3*4-1*2*3+...+2014*2015*2016-2013*2014*2015
3A=2014*2015*2016
A=2014*2015*2016/3
A=2727117120
=3x16-2x9=48-18=30
3.4.4-2.3.3
=6