c)(x+2) (y-3)= -3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{b^3-3b^2c+3bc^2-c^3+c^3-3c^2a+3ca^2-a^3+a^3-3a^2b+3ab^2-b^3}{a^2b-a^2c+b^2c-ab^2+c^2a-bc^2}\)
\(=\frac{-3b^2c+3bc^2-3c^2a+3ca^2-3a^2b+3ab^2}{b^2c-bc^2+c^2a-ac^2+a^2b-ab^2}\)
\(=\frac{-3\left(b^2c-bc^2+c^2a-ca^2+a^2b-ab^2\right)}{b^2c-bc^2+c^2a-ca^2+a^2b-ab^2}=-3\)
\(C=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2}\)
\(=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}=\frac{x+y+z}{2}\)
P/s: bài b sai đề thì pải
a) \(x\left(x-3\right)\left(x+3\right)-\left(x^2-2\right)\left(x^2+2\right)\)
\(=x\left(x^2-9\right)-x^4+4\)
\(=x^3-9x-x^4+4\)
\(=-x^4+x^3-9x+4\)
a) \({x^3} + {y^3} + x + y = \left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right) + \left( {x + y} \right) = \left( {x + y} \right)\left( {{x^2} - xy + {y^2} + 1} \right)\)
b) \({x^3} - {y^3} + x - y = \left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right) + \left( {x - y} \right) = \left( {x - y} \right)\left( {{x^2} + xy + {y^2} + 1} \right)\)
c)
\(\begin{array}{l}{\left( {x - y} \right)^3} + {\left( {x + y} \right)^3} = \left( {x - y + x + y} \right)\left[ {{{\left( {x - y} \right)}^2} - \left( {x - y} \right)\left( {x + y} \right) + {{\left( {x + y} \right)}^2}} \right]\\ = 2x.\left( {{x^2} - 2xy + {y^2} - {x^2} + {y^2} + {x^2} + 2xy + {y^2}} \right) = 2x\left( {{x^2} + 3{y^2}} \right)\end{array}\)
d)
\(\begin{array}{l}{x^3} - 3{x^2}y + 3x{y^2} - {y^3} + {y^2} - {x^2} = \left( {{x^3} - 3{x^2}y + 3x{y^2} - {y^3}} \right) + \left( {{y^2} - {x^2}} \right)\\ = {\left( {x - y} \right)^3} + \left( {y - x} \right)\left( {y + x} \right) = \left( {x - y} \right)\left[ {{{\left( {x - y} \right)}^2} - y - x} \right] = \left( {x - y} \right)\left( {{x^2} - 2xy + {y^2} - x - y} \right)\end{array}\)
\(B=3x^5y+\dfrac{1}{3}xy^4+\dfrac{3}{4}x^2y^3-\dfrac{1}{2}x^5y+x^4-x^2y^3\)
\(=\left(3x^5y-\dfrac{1}{2}x^5y\right)+\left(\dfrac{1}{3}xy^4\right)+\dfrac{3}{4}x^2y^3-x^2y^3+x^4\)
\(=\dfrac{5}{2}x^5y+\dfrac{1}{3}xy^4-\dfrac{1}{4}x^2y^3+x^4\)
đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải
Bài 2:
\(M=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)
\(N=x^2+y^2=\left(x-y\right)^2+2xy=9+2.10=29\)
\(P=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)
\(Q=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=\left(-3\right)^3+3.10.\left(-3\right)=-117\)
Bài 1:
a) \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)
b) \(B=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)
c) \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)
d) \(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-1\right)^3-3.\left(-12\right).\left(-1\right)=-37\)
\(\left(x-y-z\right)^2+\left(-x+y-z\right)^2+\left(x+y+z\right)\\ =x^2+y^2+z^2-2xy+2yz-2xz+x^2+y^2+z^2-2xy-2yz+2xz+x+y+z\\ =x^2+y^2+z^2-4xy+x+y+z\)
\(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3-3\left(a+b\right)\left(a+b\right)\left(c+a\right)\)
Đặt \(x=a+b;y=b+c;z=a+c\), biểu thức trở thành
\(x^3+y^3+z^3-3xyz\\ =\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
Thay vào biểu thức, ta được
\(\left(a+b+b+c+c+a\right)\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2-\left(a+b\right)\left(b+c\right)-\left(b+c\right)\left(c+a\right)-\left(a+b\right)\left(a+c\right)\right]\\ =2\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
c, (x+2)(y-3) = -3
th1: \(\left\{{}\begin{matrix}x+2=-1\\y-3=3\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x=-3\\y=6\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}x+2=3\\y-3=-1\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
th3: \(\left\{{}\begin{matrix}x+2=1\\y-3=-3\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)
th4: \(\left\{{}\begin{matrix}x+2=-3\\y-3=1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-5\\y=4\end{matrix}\right.\)
HAHAHAHAHAHAHAHAHAHAHAHAHAHAHAHAHAHAHA