Tính tổng: A = 1.2 + 3.4 +...+ 2(2n+1)(n+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; A =1 + 2 +3+ 4+ 5+ ... +n
Xét dãy số 1; 2; 3; 4;5;...;n
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (n - 1) : 1 + 1 = n (số số hạng)
Tổng của dãy số trên là: (n + 1).n x 2
A = (n + 1).n:2
B = 1 + 3 + 5+ 7+ ...+ (2n - 1)
Dãy số trên là dãy số cách đều với khoảng cách là:
3 - 1 = 2
Số số hạng của dãy số trên là: (2n - 1 - 1) : 2 + 1 = n
Tổng của dãy số trên là: (2n - 1 + 1) x n : 2 = n2
Vậy B = n2
a)
*\(1+2+3+...+\left(n-1\right)+n\)
Số số hạng là:
\(\left(n-1\right):1+1=n-1+1=n\)(số hạng)
Tổng của dãy số là:
\(\left(n+1\right)\cdot\dfrac{n}{2}=\dfrac{n\left(n+1\right)}{2}\)
*\(1+3+5+...+\left(2n-1\right)\)
Số số hạng của dãy số là:
\(\left(2n-1-1\right):2+1=\dfrac{\left(2n-2\right)}{2}+1=n-1+1=n\)(số hạng)
Tổng của dãy số là:
\(\left(2n-1+1\right)\cdot\dfrac{n}{2}=\dfrac{2n^2}{2}=2n\)
a) A =(2n-1+1).(2n-1)/2=2n.(2n-1)/2=n(2n-1)
b) B= 1.2+2.3+3.4+...+n(n+1)
3B=1.2.3+2.3.(4-1)+3.4.(5-2)+...+n(n+1)[(n+2)-(n-1)]
3B=1.2.3-1.2.3+2.3.4-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)
3B=n(n+1)(n+2)
B=n(n+1)(n+2)/3
4C=1.2.3.4+2.3.4.(5-1)+3.4.5(6-2)+...+n(n+1)(n+2).[(n+3)-(n-1)]
4C=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+...+n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)
4C=n(n+1)(n+2)(n+3)
C=n(n+1)(n+2)(n+3)/4
D = 1.2 + 2.3+ 3.4 +...+ 99.100
=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
=99.100.101-0.1.2
=99.100.101
=999900
=>D=999900:3=333300
Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)
=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]
=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)
=n.(n+1).(n+2)-0.1.2
=n.(n+1)(n+2)
=>Dn=n.(n+1)(n+2):3
=>điều cần chứng minh
a, 1 + 2 + 3 + ... + n = \(\left[\frac{n-1}{1}+1\right]\left[n+1\right]\)
1 + 3 + 5 + 7 + ... + [2n-1] = \(\left[\frac{2n-1-1}{2}+1\right]\left[2n-1+1\right]\)
b, A = 1.2+2.3+3.4+...+n[n+1]
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + n[n+1].3
Mà: 1.2.3 = 1.2.3 - 0.1.2
2.3.3 = 2.3.4 - 1.2.3
.......................................
n[n+1].3 = n[n+1][n+2] - [n-1]n[n+1]
=> 3A = [n-1]n[n+1]
=> A = \(\frac{\left[n-1\right]n\left[n+1\right]}{3}\)
1.2.3.+2.3.4+...+n[n+1][n+2]
4A = 1.2.3.[4-0] + 2.3.4.[5-1] + .... + n[n+1][n+2].[[n+3] - [n-1]]
4A = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 +...+ n[n+1][n+2][n+3] - n[n+1][n+2][n-1]
4A = 1.2.3.4 - 1.2.3.4 + 2.3.4. 5 - 2.3.4.5 + ... + n[n+1][n+2][n+3] - n[n+1][n+2][n+3] + n[n+1][n+2][n-1]
4A = n[n+1][n+2][n-1]
A = \(\frac{\text{n[n+1][n+2][n-1]}}{4}\)