Tìm số tự nhiên n biết
3n.3=243
2n.2^4=128
5.4n+13=1293
2.3n=162\
3n+3n+2=810
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. (Mình đưa nó về thừa số nguyên tố nha, cái nào ko đc thì thôi)
125 = 53; 27 = 33; 64 = 26; 1296 = 64; 1024 = 210; 2401 = 74; 43 = 64; 8 = 23; 25.125 = 3125 = 55.
2.
2n = 16 =) n = 4. 3n = 81 =) n = 4. 2n-1 = 64 =) n = 7. 3n+2 = 27.81 =) n = 5. 25.5n-1 = 625 =) n = 3.
2n.8 = 128 =) n = 4. 3.5n = 375 =) n = 3. (3n)2 = 729 =) n = 3. 81 ≤ 3n ≤ 729 =) n = 4; 5; 6.
\(125=5^3;27=3^3;1296=36^2=6^4=2^4.3^4;1024=32^2=2^{10};2401=49^2=7^4;4^3=2^6;8=2^3;25.125=5^2.5^3=5^5\)
Ta có : n + 4 chia hết cho n - 3
=> n - 3 + 7 chia hết cho n - 3
=> 7 chia hết cho n - 3
=> n - 3 thuộc Ư(7) = {-7;-1;1;7}
Ta có bảng :
n - 3 | -7 | -1 | 1 | 7 |
n | -4 | 2 | 4 | 10 |
a.Để n là số tự nhiên thì \(n+4⋮n-3\) Ta có: \(n-3=n+4-7\) Vì \(n-4⋮n-4\) nên để \(n+4⋮n-3\) thì \(7⋮n-3\) \(\Rightarrow n-3\inƯ\left(7\right)\) Ư(7)={1;-1;7;-7} Lập bảng
\(n-3\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(n\) | \(4\) | \(2\) | \(10\) | \(-4\) |
Vậy x={4;2;10;-4}
Bài 1: Gọi d=ƯCLN(3n+11;3n+2)
=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)
=>\(3n+11-3n-2⋮d\)
=>\(9⋮d\)
=>\(d\in\left\{1;3;9\right\}\)
mà 3n+2 không chia hết cho 3
nên d=1
=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau
Bài 2:
a:Sửa đề: \(n+15⋮n-6\)
=>\(n-6+21⋮n-6\)
=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)
mà n>=0
nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)
b: \(2n+15⋮2n+3\)
=>\(2n+3+12⋮2n+3\)
=>\(12⋮2n+3\)
=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)
mà n là số tự nhiên
nên n=0
c: \(6n+9⋮2n+1\)
=>\(6n+3+6⋮2n+1\)
=>\(2n+1\inƯ\left(6\right)\)
=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;1\right\}\)
Cách tui đúng nhất thề luôn
a)2n*16=128
=>2n=128:16
=>2n=8
=>n=4
b)3n*9=27
=>3n=27:9
=>3n=3
=>n=1
c)(2n+1)3=27
=>(2n+1)3=33
=>2n+1=3
=>2n=2
=>n=1
a) 2n.16 = 128
32n = 128
n = 128 : 32
n = 4
Vậy n = 4
b) 3n.9=27
27n = 27
n = 27:27
n = 1
Vậy n = 1
c) (2n + 1)3 = 27
(2n + 1)3 = 33
=> 2n + 1 = 3
=> 2n = 3 - 1 = 2
=> n = 2 : 2 = 1
Vậy n = 1
để\(\frac{2n+1}{3n+2}\)có giá trị nguyên => \(2n+1⋮3n+2=>3\left(2n+1\right)⋮3n+2\)
\(< =>6n+3⋮3n+2\)(1)
Ta lại có : \(3n+2⋮3n+2\)với mọi n \(=>6n+4⋮3n+2\)(2)
Từ (1) và (2) suy ra \(\left(6n+4\right)-\left(6n+3\right)⋮3n+2\)<=> \(1⋮3n+2\)
Vì n là STN,do đó \(3n+2\inƯ\left(1\right)=\left(1\right)\)
Với 3n+2=1=>n=\(-\frac{1}{3}\)(loại)
Vậy k có số tự nhiên n thỏa mãn,các bài còn lại làm tương tự
a, \(\frac{3n+5}{n+1}=\frac{3\left(n+1\right)+2}{n+1}=\frac{2}{n+1}\)
\(\Rightarrow n+1\in2=\left\{\pm1;\pm2\right\}\)
n + 1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
b, \(\frac{n+13}{n+1}=\frac{n+1+12}{n+1}=\frac{12}{n+1}\)
\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
n + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 | 5 | -7 | 11 | -13 |
c, \(\frac{3n+15}{n+1}=\frac{3\left(n+1\right)+12}{n+1}=\frac{12}{n+1}\)
\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
n + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 | 5 | -7 | 11 | -13 |
`3n.3=243`
`9n=243`
`n=243:9=27`
_______________________________________________
`2n.2^4=128`
`2^{5} n=2^7`
`n=2^7:2^5=2^2`
`n=4`
_______________________________________________
`5.4n+13=1293`
`20n=1293-13`
`20n=1280`
`n=64`
_______________________________________________
`2.3n=162`
`6n=162`
`n=162:6=27`
_______________________________________________
`3n+3n+2=810`
`(3+3)n=810-2`
`6n=808`
`n=808:6=404/3`
\(a,3n.3=243\\ =>9n=243\\ =>n=27\left(thoamanđk\right)\\ b,2n.2^4=128\\=>2n.16=128 \\ =>2n=8\\ =>n=8:2\\ =>n=4\left(thoamanđk\right)\\ c,5.4n+13=1293\\ =>20n=1293-13\\ =>20n=1280\\ =>n=64\left(thoamanđk\right)\\ d,2.3n=162\\ =>6n=162\\ =>n=162:6\\ =>n=27\left(thoamanđk\right)\\ e,3n+3n+2=810\\ =>6n+2=810\\ =>6n=810-2\\ =>6n=808\\ =>n=\dfrac{404}{3}\left(kothaman\right)\\ =>n\in\varnothing\)