CMR: Số các chữ số của 2016^2016 và 2016^2016 + 2^2016 là bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử trong 2016 số hạng không có số nào bằng nhau.Không mất tính tổng quát ta giả sử:
\(a_1< a_2< a_3< ...........< a_{2016}\)
Vì \(a_1,a_2,......,a_{2016}\) đều là số nguyên dương nên ta suy ra:
\(a_1\ge1,a_2\ge2,.........,a_{2016}\ge2016\)
Suy ra:\(\frac{1}{a_1}+\frac{1}{a_2}+.........+\frac{1}{a_{2016}}< 1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2016}\)
\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+.....+\left(\frac{1}{1024}+...+\frac{1}{2016}\right)\)
\(< 1+\frac{1}{2}.2+\frac{1}{2^2}.2^2+.........+\frac{1}{2^{10}}.2^{10}=11< 12\)
Do đó điều giả sử là sai
Vậy trong 2016 số đã cho có ít nhất hai số bằng nhau
Gọi số chữ số của 22016 là a (\(a\in\)N*)
Gọi số chữ số của 52016 là b (\(b\in\)N*)
=>\(\hept{\begin{cases}10^{a-1}< 2^{2016}< 10^a\\10^{b-1}< 5^{2016}< 10^b\end{cases}}\)
=>\(10^{a-1}.10^{b-1}< 2^{2016}.5^{2016}< 10^a.10^b\)
=>\(10^{a+b-2}< 10^{2016}< 10^{a+b}\)
=> a + b - 2 < 2016 < a + b
=> 2016 < a + b < 2018
Mà a+b là số tự nhiên => a+b=2017
Vậy 2 số 22016 và 52016 viết liền nhau thì được một số có 2017 chữ số
\(\frac{2016.x}{xy+2016x+2016}+\frac{y}{yz+y+2016}+\frac{z}{xz+z+1}\)= \(\frac{2016x}{xy+2016x+1}+\frac{xy}{xyz+xy+2016x}+\frac{xyz}{xxyz+xyz+xy}\) = \(\frac{2016x}{xy+2016x+xyz}+\frac{xy}{xyz+xy+2016x}+\frac{xyz}{2016x+xyz+xy}\)
=\(\frac{2016x+xy+xyz}{2016x+xy+xyz}=1\)
TK: Câu hỏi của Lãnh Hạ Thiên Băng - Toán lớp 6 - Học trực tuyến OLM
bạn troll mình sao ?
\(2016^{2016}=2016^{2016}\)
\(\Rightarrow2016^{2016}< 2016^{2016}+2^{2016}\)