1.2 mũ 2+ 2.3mũ 2 + 3.4mũ 2 + ...+ 99.100mũ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.3\times2^3+3\times4^2\)
\(=3\times2^3+3\times\left(2^2\right)^2\)
\(=3\times2^3+3\times2^4\)
\(=3\times\left(2^3+2^4\right)=3\times\left(8+16\right)=3\times24=72\)
??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
a)\(\left(5^{23}.5^{18}\right):5^{39}-5^0.0^5\)
= \(5^{41}:5^{39}-1.0\)
= \(5^2-0\)
= \(25-0=25\)
b)\(\left[2.3^3+144:\left(7^2-925:5^2\right)\right].\left|-8\right|\)
= \(\left[2.27+144:\left(49-925:25\right)\right].8\)
= \(\left[54+144:\left(49-37\right)\right].8\)
= \(\left[54+144:12\right].8\)
= \(\left[54+12\right].8\)
= \(66.8\)
= 528
\(2.3^2-4^3:\left(-16.2\right)\)
\(=2.9-64:\left(-32\right)\)
\(=18-\left(-2\right)=18+2=20\)
\(5\cdot2^x+1\cdot2^{x-2}-2^x=384\)
=>\(4\cdot2^x+2^x\cdot\dfrac{1}{4}=384\)
=>2^x=1536/17
hay \(x\in\varnothing\)
a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)
=> đpcm
Study well ! >_<
A= 1.22 + 2.32 + 3.42 +.......+99.1002
A = 22.(2-1) + 32(3-1) + 42.(4-1) +........+1002.(100 -1)
A = 23 - 22 + 33 - 32 + 43 - 42+.......+1003 - 1002
A = (23 + 33 + 43+..........+1003) - (22 + 32 + 42 +....+1002)
đặt C = 22 + 32 + 42+......+1002
đặt B = 23 + 33 + 43 + ....+1003 = 13 + 23 +33 +43+.....+1003 - 13
áp dụng công thức tổng quát :
13+ 23 + 33 + 43 +....+ n3 = (1 + 2+3+...+n)2
ta có B = (1+2+3+.....+100)2 - 1 = [(1+100).100:2]2 - 1
B = 50502 - 1
C = 22 + 32 + 42 + 52+......+1002
C =2.(3-1) + 3(4-1)+........+100.(101-1)
C = 2.3 - 2 + 3.4 - 3 + .....+ 100.101 - 1
C = 2.3 + 3.4 + 4.5 + ....100.101 - ( 2 + 3 + 4 + 5+......+ 100)
C = 1.2+2.3+3.4+4.5+....+100.101- 1.2 -( 2 + 100)x {(100-2):1+1}:2
C = 100.101.102: 3 - 2 - 5049
C = 343400 - 5051
C = 338349
A = B - C = 50502 - 338349
A = 25164151