tìm a,b thỏa mãn : |15-a| + (b - 18) ^2 <0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11 < a < 15
=> a \(\in\) { 12; 13; 14 }
12 < c < 15
=> c \(\in\) { 13; 14 }
mà a < b < c
=> a = 12; b = 13; c = 14
\(11< a< 15\)
\(\Rightarrow a=\left\{12;13;14\right\}\)
\(12< c< 15\)
\(\Rightarrow c=\left\{13;14\right\}\)
\(a< b< c\)
\(\Rightarrow a=12,b=13,c=14\)
Ta có: 11 < a < 15
=> a \(\in\left\{12;13;14\right\}\)
12 < c < 15
Mà a < b < c
=> a = 12 ; b = 13 ; c = 14
xét các trường hợp từng phép tính bé hơn 0 rồi 3 phép tính 1 bé hơn 0
Từ: \(a+b+c=1\Leftrightarrow a=1-b-c\)
Mà theo đề bài:
\(a\le b+1\le c+2\)
\(\Rightarrow1-b-c\le b+1\le c+2\)
\(\Rightarrow2\left(c+2\right)\ge1-b-c+b+1\)
\(\Rightarrow2c+4\ge2-c\Leftrightarrow3c+4\ge2\Leftrightarrow3c\ge-2\Leftrightarrow c\ge-\frac{2}{3}\)
Tìm điểm rơi: ( a; b ; c ) = ( -3; 3; 0 ) hoặc ( 3; -3 ; 0 )
Xét: 2P + 3.18 \(\ge\) 2( 3ab + bc + ca ) + 3(a^2 + b^2 + c^2) = ( a+ b + c)^2 + 2(a+b)^2 + 2c^2\(\ge\)0 đúng
( nháp = k ( a+ b + c)^2 + m ( a + b)^2 + n c^2
k + m = 3
n +k = 3
2k + 2m = 6 <=> k = 1; m = 2; n = 2
2k = 2 )
Do đó: 2P \(\ge\)-3.18
=> P \(\ge\)-27
Dấu "=" xảy ra <=> a = - b ; c = 0 ; a^2 + b^2 + c^2 = 18 <=> a = 3; b = - 3; c = 0 hoặc a = -3; b = 3 và c = 0