K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

a) + ΔABE vuông tại A.

+ ΔBCD vuông tại C.

+ Ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy ΔBED vuông tại B.

b) + Áp dụng định lý Pytago trong ΔABE vuông tại A ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

+ Áp dụng định lý Pytago trong ΔEBD vuông tại B ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

19 tháng 3 2019

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

a) + ΔABE vuông tại A.

+ ΔBCD vuông tại C.

+ Ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy ΔBED vuông tại B.

b) + Áp dụng định lý Pytago trong ΔABE vuông tại A ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

+ Áp dụng định lý Pytago trong ΔEBD vuông tại B ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

3 tháng 1 2017

a) Từ chu vi tính được cạnh tam giác đều là 30 : 3 = 10 ( cm)

Kẻ đường cao AH xuống BC, H thuộc BC

Dùng Pytago tìm được AH = \(5\sqrt{3}\)

Diện tích tam giác ABC là AH . BC = \(50\sqrt{3}\)

Vậy ...

22 tháng 7 2019

A M N H C B

Cho tam giác ABC có MN =15 cm  NK =12 cm  

Xét: Tam giác AHB (HBN) = 90 độ HM = đc

Xét tam giác AHC (AHC = 90 độ) có HN là đường cao

=> AH =An = AC  (2)

Kết luận sơ sơ: Từ (1) (2) AM AB =AN=AC

...................... còn lại chịu -.-

~Study well~ :)

22 tháng 7 2019

cậu làm sai rồi M là trung điểm của BC mà, cậu sai ngay từ cái hình rồi.

23 tháng 2 2022

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

a) Trong tam giác ABC, ta có: AD là đường phân giác của:

\(\dfrac{DB}{DC}\)=\(\dfrac{AB}{AC}\)

Mà AB = 15cm và AC = 20cm ( gt )

Nên \(\dfrac{DC}{DB}\)=\(\dfrac{15}{20}\)

\(\dfrac{DB}{DB+DC}\)=\(\dfrac{15}{15+20}\)( Tính chất tỉ lệ thức đã học ở lớp 7 )

\(\dfrac{DB}{BC}\)=\(\dfrac{15}{35}\)⇒DB=\(\dfrac{15}{35}\).BC=\(\dfrac{15}{35}\).25=\(\dfrac{75}{5}\)(cm)

b) Kẻ AH⊥BC

Ta có:\(S_{ABD}\)=\(\dfrac{1}{2}\)AH.BD

\(S_{ACD}\)=\(\dfrac{1}{2}\)AH.CD

\(\dfrac{S_{ABD}}{S_{ACD}}\)=\(\dfrac{\dfrac{1}{2}AH.BD}{\dfrac{1}{2}AH.CD}\)=\(\dfrac{BD}{DC}\)

Mà \(\dfrac{DB}{DC}\)=\(\dfrac{15}{12}\)=\(\dfrac{3}{4}\)

\(\dfrac{S_{ABD}}{S_{ACD}}\)=\(\dfrac{3}{4}\)(đpcm)

 

24 tháng 3 2021

undefined

3 tháng 3 2018

P/s bạn kia làm cái gì mà mình không hiểu

a) có AB = 15cm ( bài cho)
Xét tam giác AHC có góc AHC = 90 độ( AH vuông góc với BC)
theo định lý py-ta-go có 
AB^2= AH^2+BH^2
=> BH^2 = AB^2 - AH^2
=> BH^2= 15^2- 12^2= 81
=> BH= 9
có BH+ HC=BC => BC= 9+16= 25
Vậy ta có AB= 15cm; BC= 25cm

câu sau tương tự bạn đó ( câu đầu làm mình không thấy tính AB với BC đâu hết )

3 tháng 3 2018

a)Ta có: \(AC^2=AH^2+HC^2\)(định lý pytago)

\(\Rightarrow AC^2=12^2+16^2=144+256=400\)

\(\Rightarrow AC=20cm\)

b)Ta có:\(\widehat{HAC}\)\(+\)\(\widehat{AHC}\)\(+\)\(\widehat{ACH}\)\(=180^o\)(tổng 3 góc trong 1 tam giác)

\(\Rightarrow\widehat{ACH}\)\(=180^o\)\(-\widehat{HAC}\)\(-\widehat{AHC}\)\(=180^o\)\(-37^o-90^o=53^o\)

ta có:\(\widehat{ABC}\)\(=\widehat{HAC}\)\(+\widehat{ACH}\)(tính chất góc ngoài của tam giác)

Hay:\(\widehat{ABC}\)\(=37^o+53^o=90^o\)