Cho a+b+c chia hết cho 6 ; chứng minh a\(^3\)+b\(^3\)+c\(^3\) chia hết cho 6?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)\)
\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)\)
Ta có \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮6\)(vì tích của 3 số nguyên/số tự nhiên liên tiếp)
Tương tự ta có \(\left(b^3-b\right)⋮6;\left(c^3-c\right)⋮6;\left(d^3-d\right)⋮6\)
\(\Rightarrow\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)⋮6\)
\(\Rightarrow\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)⋮6\)
Mà \(a+b+c+d⋮6\Rightarrow a^3+b^3+c^3+d^3⋮6\left(ĐPCM\right)\)
P/S: bt làm có bài này thôi :v
a, nếu tổng của 2 số chia hết cho 9 và một trong hai số chia hết cho 3 thì số còn lại chua hết cho 3.Đ
b, nếu hiệu của 2 số chia hết cho 6 và số thứ nhất chia hết cho 6 thì số thứ hai chia hết cho 3.Đ
c, nếu a chia hết cho 18, b chia hết cho 9, c không chia hết cho 6 thì a+b+c không chia hết cho 3.S
Lời giải:
Biến đổi:
\((a+b)(b+c)(c+a)-2abc=ab(a+b)+bc(b+c)+ca(c+a)\)
\(=ab(a+b+c)+bc(a+b+c)+ac(a+b+c)-3abc\)
\(=(a+b+c)(ab+bc+ac)-3abc\)
Ta thấy , nếu cả 3 số \(a,b,c\) đều lẻ, thì \(a+b+c\) lẻ, do đó \(a+b+c\not\vdots 6\) (không t/m điều kiện đề bài)
Do đó, tồn tại ít nhất một số trong 3 số $a,b,c$ là số chẵn
Kéo theo \(3abc\vdots 6\)
Mà \(a+b+c\vdots 6\Rightarrow (a+b+c)(ab+bc+ac)\vdots 6\)
\(\Rightarrow (a+b+c)(ab+bc+ac)-3abc\vdots 6\)
\(\Leftrightarrow (a+b)(b+c)(c+a)-2abc\vdots 6\) (đpcm)
Xét hiệu (a3+b3+c3) - (a+b+c)
=a3+b3+c3-a-b-c
=(a3-a) + (b3-b)+(c3-c)
=a(a2-1)+ b(b2-1) +c(c2-1)
=a(a-1)(a+1)+b(b-1)(b+1)+c(c-1)(c+1)
Vì a(a-1)(a+1) là tích 3 số tự nhiên liên tiếp=> chia hết cho 2 và 3
Mà (2;3)=1
=> a(a-1)(a+1) chia hết cho 6
=> (a3 +b3+c3) - (a+b+c) chia hết cho 6
Mà a+b+c chia hết cho 6
=> a3+b3+c3 chia hết cho 6 (đpcm)
\(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Ta có: Với 3 số a,b,c ít nhất có 1 cặp a,b,c cùng chẵn hoặc cùng lẻ
=> \(\left[{}\begin{matrix}a+b⋮2\\b+c⋮2\\c+a⋮2\end{matrix}\right.\)=> \(3\left(a+b\right)\left(b+c\right)\left(c+a\right)⋮6\)
=> \(a^3+b^3+c^3⋮6\)
a+b+c chia hết cho 6 =>a+b+c chia hết cho 2
=> trong 3 số đó có 2 số lẻ hoặc cả là số chẵn
=>tổng 2 số bất kì trong 3 số chi hết cho 2(1)
Ta có:(a+b+c)3
\(=a^3+b^3+c^3+3a^2b+3ab^2+3a^2c+3ac^2+3b^2c+3bc^2+6abc=a^3+b^3+c^3+3\left(a+c\right)\left(b+c\right)\left(a+b\right)\)
(2)(Bạn tách 6abc ra làm 2 cái 3abc sau đó ghép thành 2 cái bộ 3 và 1 cái bộ 2)
Từ 1 =>3(a+b)(b+c)(c+a) chia hết cho 6(3)
Do a+b+c chia hết cho 6 =>(a+b+c)3 chia hết cho 6(4)
Từ 2 ;3 và 4 =>a3+b3+c3 chia hết cho 6
2 lik.e nhé!