K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 4 2021

Do a;b;c là 3 cạnh của 1 tam giác nên: \(\left\{{}\begin{matrix}a+b-c>0\\a+c-b>0\\b+c-a>0\end{matrix}\right.\)

\(A=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)

\(=\left[c^2-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-c^2\right]\)

\(=\left(c+a-b\right)\left(c+b-a\right)\left(a+b-c\right)\left(a+b+c\right)>0\) (đpcm)

1 tháng 6 2018

A=(2ab-a^2-b^2+c^2).(2ab+a^2+b^2-c^2)

A=(c^2-(a-b)^2).((a+b)^2-c^2)

A=(c-a+b)(c+a-b)(a+b-c)(a+b+c)

Do c+b-a>0

c+a-b>0

a+b-c>0

a+b+c>0

=>A>0

7 tháng 2 2020

\(a< b+c\Rightarrow a^2< ab+ac\)

Tương tự:\(b^2< bc+ab;c^2< ca+cb\)

Cộng lại có đpcm

26 tháng 3 2017

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho!!

14 tháng 4 2017

dùng BĐT tam giác là ra

12 tháng 8 2017

bạn nhóm theo công thức : A2 -B2=(A+B).(A-B)

rồi dùng BĐT trong tam giác