K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

  \(\frac{12a-15b}{7}\)  = \(\frac{20c-12a}{9}\)  = \(\frac{15b-20c}{11}\) = \(\frac{12a-15b+20c-12a+15b-20b}{7+9+11}\) = \(\frac{0}{27}\) = 0

=> a = b = c

Mà a + b + c = 48

=> a = b = c = 48 : 3 = 16

Vậy a = b = c = 16.

30 tháng 12 2021

Tham khảo

19 tháng 9 2016

\(\frac{12a-15b}{7}=\frac{20c-12a}{9}=\frac{15b-20c}{11}=\frac{12a-15b+20c-12a+15b-20c}{7+9+11}=0\)(tử bằng 0)

=> 12a - 15b = 20c - 12a = 15b - 20c => 12a = 15b = 20c

=>\(\frac{12a}{60}=\frac{15b}{60}=\frac{20c}{60}=\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=\frac{a+b+c}{5+4+3}=\frac{48}{12}=4\)=> a = 4.5 = 20 ; b = 4.4 = 16 ; c = 4.3 = 12

30 tháng 11 2018

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{12a-15b}{7}=\frac{20c-12a}{9}=\frac{15b-20c}{11}=\frac{12a-15b+20c-12a+15b-20c}{7+9+11}=0\)

\(\frac{12a-15b}{7}=0\Rightarrow12a=15b\Rightarrow\frac{a}{15}=\frac{b}{12}\Rightarrow\frac{a}{5}=\frac{b}{4}\)(1)

\(\frac{20c-12a}{9}=0\Rightarrow20c=15a\Rightarrow\frac{a}{20}=\frac{c}{12}\Rightarrow\frac{a}{5}=\frac{c}{3}\)(2)

\(\frac{15b-20c}{11}=0\Rightarrow15b=20c\Rightarrow\frac{b}{20}=\frac{c}{15}\Rightarrow\frac{b}{4}=\frac{c}{3}\)(3)

từ (1),(2),(3) => \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=\frac{a+b+c}{5+4+3}=\frac{48}{12}=4\)(t/c dãy tỉ số bằng nhau)

\(\frac{a}{5}=4\Rightarrow a=20,\frac{b}{4}=4\Rightarrow b=16,\frac{c}{3}=4\Rightarrow c=12\)

Vậy a=20, b=16, c=12

6 tháng 3 2020

Áp dụng tc của dãy tỉ số bằng nhau :

\(\frac{12a-15b}{7}=\frac{20c-12a}{9}=\frac{15b-20c}{11}=\frac{12a-15b+20c-12a+15b-20c}{7+9+11}=\frac{0}{27}=0\)

\(=>\hept{\begin{cases}12a-15b=0=>12a=15b=>\frac{a}{5}=\frac{b}{4}\\20c-12a=0=>20c=12a=>\frac{c}{3}=\frac{a}{5}\\15b-20c=0=>15b=20c=>\frac{c}{3}=\frac{b}{4}\end{cases}=>\frac{a}{5}=\frac{b}{4}=\frac{c}{3}}\)

Đặt \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=k=>\hept{\begin{cases}a=5k\\b=4k\\c=3k\end{cases}}\)

Thay vào : \(a+b+c=5k+4k+3k=12k=48=>k=4\)

\(=>\hept{\begin{cases}a=5k=5.4=20\\b=4k=4.4=16\\c=3k=3.4=12\end{cases}}\)

Vậy...

a: \(\dfrac{2a+15b}{5a-7b}=\dfrac{2c+15d}{5c-7d}\)

\(\Leftrightarrow\left(2a+15b\right)\left(5c-7d\right)=\left(5a-7b\right)\left(2c+15d\right)\)

\(\Leftrightarrow10ac-14ad+75bc-105bd=10ac+75ad-14bc-105bd\)

\(\Leftrightarrow-14ad+75bc=-14bc+75ad\)

=>ad=bc

hay a/b=c/d

b: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a^2}{b^2}=\dfrac{b^2k^2}{b^2}=k^2\)

\(\dfrac{2c^2-ac}{2d^2-bd}=\dfrac{2\cdot d^2k^2-bk\cdot dk}{2\cdot d^2-bd}=k^2\)

Do đó; \(\dfrac{a^2}{b^2}=\dfrac{2c^2-ac}{2d^2-bd}\)

Đặt a/b=c/d=k

=>a=bk; c=dk

1: \(\dfrac{2a+15b}{5a-7b}=\dfrac{2\cdot bk+15b}{5\cdot bk-7b}=\dfrac{2k+15}{5k-7}\)

\(\dfrac{2c+15d}{5c-7d}=\dfrac{2dk+15d}{5dk-7d}=\dfrac{2k+15}{5k-7}\)

Do đó: \(\dfrac{2a+15b}{5a-7b}=\dfrac{2c+15d}{5c-7d}\)

2: \(\dfrac{a+2c}{b+2d}=\dfrac{bk+2dk}{b+2d}=k\)

\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k\)

Do đó: \(\dfrac{a+2c}{b+2d}=\dfrac{a+c}{b+d}\)

hay (a+2c)(b+d)=(a+c)(b+2d)