Cho: 3a + 4b + 5c \(⋮\)11 (a; b; c \(\in\)N)
Chứng minh rằng: 12a + 5b - 2c \(⋮\)11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta xó: 3a+4b+5c \(⋮\)11
=>12a+16b+20c \(⋮\)11
=>12a+11b+5b+22c-2c
=>12a+5b-2c \(⋮\)11 (vì 11b \(⋮\)11 và 22c \(⋮\)11 )
vậy 12a+5b-2c \(⋮\)11.(đpcm)
chép ở đâu z bạn o0o đồ khùng o0o
tớ bít nè chắc ở SKTS_BFON
chép nhận tk đúng ko
ta xó: 3a+4b+5c \(⋮\)11
=>12a+16b+20c \(⋮\)11
=>12a+11b+5b+22c-2c
=>12a+5b-2c \(⋮\)11 (vì 11b \(⋮\)11 và 22c \(⋮\)11 )
vậy 12a+5b-2c \(⋮\)11.(đpcm)
chúc năm mới hạnh phúc. k nha.
Ta có: 3a + 4b + 5c chia hết cho 11
=> 12a + 16b + 20c chia hết cho 11
=> 12a + 11b + 5b + 22c - c
=> 12a + 5b - 2c chia hết cho 11 (vì 11b chia hết cho 11 và 22c chia hết cho 11)
Vậy: 12a + 5b - 2c chia hết cho 11
=> ĐPCM
Nếu 3a + 4b + 5c chia hết cho 11
=> 3(3a + 4b + 5c) = 9a + 12b + 15c chia hết cho 11
Xét :
9a + 12b + 15c - ( 11b + 11c) = 9b + 1b + 4c = 9b + b + 4c(điều phải chứng minh)
3a + 4b + 5c \(⋮\) 11
\(\Rightarrow\)3.(3a + 4b + 5c) = 9a + 12b + 15c \(⋮\) 11
\(\Rightarrow\) (9a + 12b + 15c) - (11b + 11c) = 9a + b + 4c \(⋮\)11
Ta có: \(\left(3a+4b+5c\right)⋮11\)
\(\Rightarrow3\left(3a+4b+5c\right)⋮11\)(1)
Ta lại có: \(11\left(b+c\right)⋮11\forall b,c\)(2)
Từ (1) và (2) suy ra \(3\left(3a+4b+5c\right)-11\left(b+c\right)⋮11\)
hay \(9a+b+4c⋮11\)(đpcm)
Ta có: 3a + 4b + 5c \(⋮\)11
=> 4(3a +4b + 5c) \(⋮\)11
=> 12a + 16b +20c \(⋮\)11
Ta lại có: 11b + 22c = 11 x (b + 2c)
=> 11b + 22c \(⋮\)11
=> (12a + 16b + 20c) - (11b + 22c) \(⋮\)11
=> 12a + 16b + 20c - 11b - 22c \(⋮\)11
=> 12a + 5b - 2c \(⋮\)11 (đpcm)
\(\frac{12a+5b-2c}{11}=\frac{4\left(3a+4b+5c\right)-11\left(b-c\right)}{11}=4-\left(b-c\right)\Rightarrow dpcm\)