K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2017

Ta có:\(8x^2+10x+3=\left(8x^2+6x\right)+\left(4x+3\right)\)

\(=2x\left(4x+3\right)+\left(4x+3\right)\)

\(=\left(2x+1\right)\left(4x+3\right)\)

\(4x^2+7x+3=\left(4x^2+4x\right)+\left(3x+3\right)\)

\(=4x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(x+1\right)\left(4x+3\right)\)

\(ĐKXĐ:x\ne-1,x\ne\frac{-3}{4}\)

\(8x^2+10x+3=\frac{1}{4x^2+7x+3}\)

<=>\(\left(8x^2+10x+3\right)\left(4x^2+7x+3\right)=1\)

<=>\(\left(2x+1\right)\left(4x+3\right)\left(x+1\right)\left(4x+3\right)=1\)

<=>\(\left(2x+1\right)\left(4x+3\right)^2\left(x+1\right)=1\)

<=>\(\left(4x+2\right)\left(4x+3\right)^2\left(4x+4\right)=8\)

(Nhân cả 2 vế với 8)

<=>\(\left[\left(4x+2\right)\left(4x+4\right)\right]\left(4x+3\right)^2=8\)

<=>\(\left(16x^2+24x+8\right)\left(16x^2+24x+9\right)=8\)

Đặt \(16x^2+24x+8.5=y\)

\(ĐK:y>-0.5\)

(Vì \(16x^2+24x+8.5=\left(4x+3\right)^2-0.5>-0.5\)với mọi x thỏa mãn ĐKXĐ)

Phương trình trở thành:

(y-0.5)(y+0.5)=8

<=>\(y^2-0.25=8\)

<=>\(y^2=8.25\)

<=>\(\orbr{\begin{cases}y=\frac{\sqrt{33}}{2}\left(\text{thỏa mãn}\right)\\y=\frac{-\sqrt{33}}{2}\left(\text{loại}\right)\end{cases}}\)

Với \(y=\frac{\sqrt{33}}{2}\)

Ta có:\(16x^2+24x+8.5=\frac{\sqrt{33}}{2}\)

<=>\(32x^2+48x+17-\sqrt{33}=0\)

<=>\(\left(x\sqrt{33}+3\sqrt{2}\right)^2=\sqrt{33}+1\)

<=>\(\orbr{\begin{cases}x\sqrt{33}+3\sqrt{2}=\sqrt{\sqrt{33}+1}\\x\sqrt{33}+3\sqrt{2}=-\sqrt{\sqrt{33+1}}\end{cases}}\)

<=>\(\orbr{\begin{cases}x=\frac{\sqrt{\sqrt{33}+1}-3\sqrt{2}}{\sqrt{33}}\\x=\frac{-\sqrt{\sqrt{33}+1}-3\sqrt{2}}{\sqrt{33}}\end{cases}}\)

<=>\(\orbr{\begin{cases}x=\frac{\sqrt{33\sqrt{33}+33}-3\sqrt{66}}{33}\left(\text{thỏa mãn ĐKXĐ}\right)\\x=\frac{-\sqrt{33\sqrt{33}+33}-3\sqrt{66}}{33}\left(\text{thỏa mãn ĐKXĐ}\right)\end{cases}}\)

(Kết luận: Vậy tập nghiệm của phương trình đã cho là...)

20 tháng 1 2017

a, 3x2 - 8x2 - 2x+3=0

2x(3-8) - 2x+3=0

2x5 - 2x+3=0

2x5 - 2x=0-3=

2x5 - 2x=-3

2x(5-x)=-3

5-x=-3/2

5-x=1,5

x=5-1,5

x=3,5

22 tháng 1 2017

3,5 nha bn

chúc bn học tốt

happy new year

a. (3x - 1)2 - (x + 3)2 = 0

\(\Leftrightarrow\left(3x-1+x+3\right)\left(3x-1-x-3\right)=0\)

\(\Leftrightarrow\left(4x+2\right)\left(2x-4\right)=0\)

\(\Leftrightarrow4x+2=0\)  hoặc  \(2x-4=0\)

1. \(4x+2=0\Leftrightarrow4x=-2\Leftrightarrow x=-\dfrac{1}{2}\)

2. \(2x-4=0\Leftrightarrow2x=4\Leftrightarrow x=2\)

S=\(\left\{-\dfrac{1}{2};2\right\}\)

 

b. \(x^3=\dfrac{x}{49}\)

\(\Leftrightarrow49x^3=x\)

\(\Leftrightarrow49x^3-x=0\)

\(\Leftrightarrow x\left(49x^2-1\right)=0\)

\(\Leftrightarrow x\left(7x+1\right)\left(7x-1\right)=0\)

\(\Leftrightarrow x=0\) hoặc  \(7x+1=0\) hoặc \(7x-1=0\)

1. x=0

2. \(7x+1=0\Leftrightarrow7x=-1\Leftrightarrow x=-\dfrac{1}{7}\)

3. \(7x-1=0\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)

28 tháng 2 2021

`b,2(x+1)=5x-7`

`=>2x+2=5x-7`

`=>3x=9`

`=>x=3`

1 tháng 3 2021

`d,(10x+3)/12=1+(6+8x)/9`

`<=>(10x+3)/12=(8x+15)/9`

`<=>30x+9=32x+60`

`<=>2x=-51`

`<=>x=-51/2`

7 tháng 6 2018

Điều kiện của phương trình là 4 x 2   +   7 x   -   2   ≥   0 và x ≠ -2. Ta có

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Phương trình cuối có hai nghiệm là x 1  = 5/2, x 2  = -2

    Chỉ có giá trị  x 1 = 5/2,  x 2  = -2

    Chỉ có giá trị  x 1  = 5/2 thỏa mãn điều kiện và nghiệm đúng phương trình đã cho.

    Đáp số: x = 5/2

a: (x^2+x)^2+4x^2+4x-12

=(x^2+x)^2+4(x^2+x)-12

=(x^2+x+6)(x^2+x-2)

=(x^2+x+6)(x+2)(x-1)

b: =(x^2+8x)^2+22(x^2+8x)+105+15

=(x^2+8x)^2+22(x^2+8x)+120

=(x^2+8x+10)(x^2+8x+12)

=(x^2+8x+10)(x+2)(x+6)

c: =8x^2+12x-2x-3

=(2x+3)(4x-1)

a: =(x^2+x)^2+4(x^2+x)-12

=(x^2+x+6)(x^2+x-2)

=(x^2+x+6)(x+2)(x-1)

b: =(x^2+8x)^2+22(x^2+8x)+120

=(x^2+8x+12)(x^2+8x+10)

=(x+2)(x+6)(x^2+8x+10)

c: =8x^2+12x-2x-3

=(2x+3)(4x-1)