Cho a+b+c+d=2 ( \(a,b,c,d\in R\)) chứng minh \(a^2+b^2+c^2+d^2\ge1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2+d^2\ge1\)
\(\Leftrightarrow\)\(a^2+b^2+c^2+d^2\ge2-1\)
thay a+b+c+d=2 ta có
\(\Leftrightarrow\)\(a^2+b^2+c^2+d^2\ge a+b+c+d-1\)
\(\Leftrightarrow\)\(a^2+b^2+c^2+d^2-a-b-c-d+1\ge0\)
\(\Leftrightarrow\)\(\left(a^2-a+\frac{1}{4}\right)+\left(b^2-b+\frac{1}{4}\right)+\left(c^2-c+\frac{1}{4}\right)+\left(d^2-d+\frac{1}{4}\right)\ge0\)
\(\Leftrightarrow\)\(\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2+\left(d-\frac{1}{2}\right)^2\ge0\)(LUÔN LUÔN ĐÚNG )
VẬY BĐT ĐƯỢC CHỨNG MINH
bài này còn có cách khác nhé, áp dụng trực tiếp BĐT Bunhiacopxki
BÀI LÀM
Áp dụng BĐT Bunhiacopxki cho 2 bộ số (1;1;1;1) và (a;b;c;d) ta có:
\(\left(1^2+1^2+1^2+1^2\right)\left(a^2+b^2+c^2+d^2\right)\ge\left(1.a+1.b+1.c+1.d\right)^2\)
\(\Leftrightarrow\)\(4\left(a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2\)
\(\Leftrightarrow\)\(4\left(a^2+b^2+c^2+d^2\right)\ge4\) (a+b+c+d = 2)
\(\Leftrightarrow\)\(a^2+b^2+c^2+d^2\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=d=\frac{1}{2}\)
Dùng Bunyakovsky , có :
\(\left(1+1+1+1\right)\left(a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2=4\)
\(\left(1+1+1+1\right)\left(a^2+b^2+c^2+d^2\right)\ge4\)
\(\left(a^2+b^2+c^2+d^2\right)\ge1\)
1. Ta có : \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{a+b}{a+b+c+d}\)
\(\frac{c}{a+b+c+d}< \frac{c}{a+c+d}< \frac{b+c}{a+b+c+d}\)
\(\frac{d}{a+b+c+d}< \frac{d}{a+b+d}< \frac{c+d}{a+b+c+d}\)
Cộng vế theo vế ta được :
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\) ( đpcm )
2. Áp dụng bất đẳng thức Cô - si cho 2 số ko âm b-1 và 1 ta có :
\(\sqrt{\left(b-1\right)\cdot1}\le\frac{\left(b-1\right)+1}{2}=\frac{b}{2}\)
Dấu "=" xảy ra <=> b - 1 = 1 <=> b = 2
\(\Rightarrow a\sqrt{b-1}=a\sqrt{\left(b-1\right)\cdot1}\le a\cdot\frac{b}{2}=\frac{ab}{2}\)
Tương tự ta có : \(b\sqrt{a-1}\le\frac{ab}{2}\) Dấu "=" xảy ra <=> a = 2
Do đó : \(a\sqrt{b-1}+b\sqrt{a-1}\le\frac{ab}{2}+\frac{ab}{2}=ab\)
Dấu "=" xảy ra <=> a = b = 2
Thôi rồi viết thiếu đề bài
abcd=1 nha các bạn ahihi
I don't now
or no I don't
..................
sorry
1a) \(A+B+C\)
\(=\left(x-y\right)^2+4xy-\left(x+y\right)^2\)
\(=\left(x^2-2xy+y^2\right)+4xy-\left(x^2+2xy+y^2\right)\)
\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(4xy-2xy-2xy\right)=0\left(đpcm\right)\)
\(\left(a^2+b^2+c^2+1\right)x=ab+bc+ca\)
\(\Leftrightarrow x=\dfrac{ab+bc+ca}{a^2+b^2+c^2+1}\)
Ta có:
\(x^2-1=\dfrac{\left(ab+bc+ca\right)^2}{\left(a^2+b^2+c^2+1\right)^2}-1=\dfrac{\left(ab+bc+ca-a^2-b^2-c^2-1\right)\left(ab+bc+ca+a^2+b^2+c^2+1\right)}{\left(a^2+b^2+c^2+1\right)^2}\)
\(=\dfrac{\left[-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2-2\right]\left[\left(a+b+c\right)^2+a^2+b^2+c^2+2\right]}{4\left(a^2+b^2+c^2+1\right)^2}< 0\)
\(\Rightarrow x^2-1< 0\Rightarrow\left|x\right|< 1\)
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
<=> \(a^2-2a+1+b^2-2b+1+c^2-2c+1=0\)
<=> \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Tổng 3 số không âm bằng 0 <=> a=b=c=1
b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc=3ab+3ac+3bc\)
<=> \(a^2-ab+b^2-bc+c^2-ac=0\)
<=> \(2a^2-2ab+2b^2-2bc+2c^2-2ac=0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Tổng 3 số không âm bằng 0 <=> a=b=c
#NguyễnHoàngTiến ơi cảm ơn bạn đã giúp mình nhưng cho mình hỏi left với right trong bài của bạn có nghĩa là gì vậy hả, mình không hiểu lắm.
Theo bất đẳng thức côsi, ta có:
\(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(c^2+d^2\ge2cd\)
\(a^2+d^2\ge2ad\)
\(\Rightarrow3\left(a^2+b^2+c^2+d^2\right)\)\(\ge2ab+2bc+2cd+2ad\)
Cộng vào hai vế:\(a^2+b^2+c^2+d^2\), ta có:
\(4\left(a^2+b^2+c^2+d^2\right)\)\(\ge\left(a+b+c+d\right)^2\)
Mà a + b + c + d = 4
\(\Rightarrow4\left(a^2+b^2+c^2+d^2\right)\)\(\ge4\)
\(\Rightarrow a^2+b^2+c^2+d^2\)\(\ge1\)