cho x/7= y/3= z/9. Tính giá trị của A=(x-y)*(y-z)*(x-z/2)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\dfrac{\dfrac{1}{9}:\dfrac{7}{5}:\dfrac{4}{3}}{\dfrac{1}{81}:\dfrac{49}{25}:\dfrac{16}{9}}=\dfrac{5}{84}:\dfrac{25}{7056}=\dfrac{84}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Để A có nghĩa, mẫu số của biểu thức phải khác 0. Vì vậy, ta cần giải phương trình: x^2y - xy^2 + y^2z - yz^2 + z^2x - zx^2 ≠ 0 b) Để tính giá trị của A khi x = -1/2, y = 5/2 và z = 8, ta thay các giá trị này vào biểu thức và tính toán: A = (-1/2)^3(5/2) - (-1/2)(5/2)^3 + (5/2)^3(8) - (5/2)(8)^3 + (8)^3(-1/2) - (8)(-1/2)^2 / (-1/2)^2(5/2) - (-1/2)(5/2)^2 + (5/2)^2(8) - (5/2)(8)^2 + (8)^2(-1/2) - (8)(-1/2)^2 Sau khi tính toán, ta sẽ có giá trị của A. Lưu ý: Để tính toán đúng, hãy chắc chắn rằng bạn đã sử dụng các giá trị x, y, z đúng và thực hiện các phép tính đúng theo thứ tự ưu tiên.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\orbr{\begin{cases}y=\frac{3}{x}\\z=\frac{4}{x}\end{cases}\Rightarrow\frac{12}{x^2}=6\Rightarrow x^2=2}\)
\(\orbr{\begin{cases}x=\frac{3}{y}\\z=\frac{6}{y}\end{cases}\Rightarrow\frac{18}{y^2}=4\Rightarrow y^2=\frac{9}{2}}\)
\(\orbr{\begin{cases}x=\frac{4}{z}\\y=\frac{6}{z}\end{cases}\Rightarrow\frac{24}{z^2}=3\Rightarrow z^2=8}\)
\(A=\frac{1}{2}\left(2+\frac{9}{2}+8\right)=\frac{4+9+16}{4}=\frac{29}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
đặt \(\frac{x}{7}=\frac{y}{8}=\frac{z}{9}=k\Rightarrow x=7k;y=8k;z=9k\)
=>A=\(\left(7k-8k\right)\left(8k-9k\right)-\left(\frac{7k-9k}{2}\right)^2=\left(-k\right)\left(-k\right)-\left(\frac{2k}{2}\right)^2\)
=k2-k2=0
Đặt \(\frac{x}{7}=\frac{y}{8}=\frac{z}{9}=k\)
\(\Rightarrow\hept{\begin{cases}x=7k\\y=8k\\z=9k\end{cases}}\left(1\right)\)
Thay (1) vào: \(A=\left(7k-8k\right)\left(8k-9k\right)-\left(\frac{7k-9k}{2}\right)^2\)
\(=-k.\left(-k\right)-\left(-k\right)^2\)
\(=k^2-k^2=0\)
Vậy A =0 .
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Áp dụng BĐT Cô-si:
$\frac{1}{x(x+1)}+\frac{x}{2}+\frac{x+1}{4}\geq 3\sqrt[3]{\frac{1}{x(x+1)}.\frac{x}{2}.\frac{x+1}{4}}=\frac{3}{2}$
Tương tự:
$\frac{1}{y(y+1)}+\frac{y}{2}+\frac{y+1}{4}\geq \frac{3}{2}$
$\frac{1}{z(z+1)}+\frac{z}{2}+\frac{z+1}{4}\geq \frac{3}{2}$
Cộng theo vế các BĐT trên:
$\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{3}{4}(x+y+z)+\frac{3}{4}\geq \frac{9}{2}$
$\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{9}{4}+\frac{3}{4}\geq \frac{9}{2}$
$\Rightarrow \frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\geq \frac{3}{2}$
Vậy gtnn của biểu thức là $\frac{3}{2}$ khi $x=y=z=1$
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\Rightarrow A=\frac{x-y+z}{x+2y-z}=\frac{2k-5k+7k}{2k+10k-7k}=\frac{k.\left(2-5+7\right)}{k.\left(2+10-7\right)}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)
đặt x/2=y/6=z/7=k
suy ra x-y+z/x+2-z = 2k-5k+7k/2k10+7k = k(2-5+70/k(2+10-70 = 4/5
vậy A=4/5