K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2017

Đề bài là rút gọn phải không bạn?

\(\frac{\left[\left(a-n\right)2-\left(a+n\right)2\right]\left[\left(y-1\right)2-\left(y+1\right)2\right]}{16.e.m}.\frac{e.h}{u-1}\)

\(=\frac{\left[2a-2n-2a-2n\right]\left[2y-2-2y-2\right]}{16.e.m}.\frac{e.h}{u-1}\)

\(=\frac{\left(-2n\right)\left(-4\right).e.h}{16.e.m\left(u-1\right)}\)

\(=\frac{8.n.e.h}{16.e.m.\left(u-1\right)}=\frac{n.h}{2.m.\left(u-1\right)}\)

3 tháng 1 2017

Trần Thùy Dung:mấy cái kia là lũy thừa 2

28 tháng 6 2017

mình giải theo cách lớp 8 nha!!!

\(\frac{\left[\left(e-m\right)^2-\left(e+m\right)^2\right]\left[\left(y-1\right)^2-\left(y+1\right)^2\right]}{16ahn}\cdot\frac{e}{u^{-1}}\)

\(=\frac{\left(e-m-e-m\right)\left(e-m+e+m\right)\left(y-1-y-1\right)\left(y-1+y+1\right)}{16ahn}\cdot eu\)

\(=\frac{\left(-2m\right)\left(2e\right)\left(-2\right)\left(2y\right)}{16ahn}\cdot eu\)

\(=\frac{16mey}{16ahn}\cdot eu\)

\(=\frac{e^2myu}{ahn}\)

3 tháng 11 2019

Ta có:

\(x^2+y^2=1\Rightarrow\left(x^2+y^2\right)^2=1\)(1)

Thay (1) vào \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)ta có:

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{x^4+2x^2y^2+y^4}{a+b}\)

\(\Leftrightarrow\left(x^4b+y^4a\right)\left(a+b\right)=\left(x^4+2x^2y^2+y^4\right).ab\)

\(\Leftrightarrow x^4ab+x^4b^2+y^4a^2+y^4ab=x^4ab+2x^2y^2ab+y^4ab\)

\(\Leftrightarrow x^4b^2+y^4a^2=2x^2y^2ab\)

\(\Leftrightarrow\left(x^2b\right)^2-2x^2y^2ab+\left(y^2a\right)^2=0\)

\(\Leftrightarrow\left(x^2b-y^2a\right)^2=0\)

\(\Leftrightarrow x^2b-y^2a=0\)

\(\Leftrightarrow x^2b=y^2a\)

\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow\left(\frac{x^2}{a}\right)^{1002}=\left(\frac{y^2}{b}\right)^{1002}=\left(\frac{1}{a+b}\right)^{1002}\)

\(\Rightarrow\frac{x^{2004}}{a^{1002}}=\frac{y^{2004}}{b^{1002}}=\frac{1}{\left(a+b\right)^{1002}}\)

\(\Rightarrow\frac{x^{2004}}{a^{1002}}+\frac{y^{2004}}{b^{1002}}=\frac{1}{\left(a+b\right)^{1002}}+\frac{1}{\left(a+b\right)^{1002}}=\frac{2}{\left(a+b\right)^{1002}}\left(đpcm\right)\)

Chúc bạn học tốt!

13 tháng 7 2016

a) \(\left(\sqrt{ab}+2\sqrt{\frac{b}{a}}-\sqrt{\frac{a}{b}}+\frac{1}{\sqrt{ab}}\right).\sqrt{ab}\) (ĐK : \(\hept{\begin{cases}a>0\\b>0\end{cases}}\)hoặc \(\hept{\begin{cases}a< 0\\b< 0\end{cases}}\))

\(=ab+2b-a+1\)

b) \(\left(-\frac{am}{b}\sqrt{\frac{n}{m}}-\frac{ab}{n}.\sqrt{mn}+\frac{a^2}{b^2}.\sqrt{\frac{m}{n}}\right)\left(a^2b^2.\sqrt{\frac{n}{m}}\right)\) (ĐK bạn tự xét nhé ^^)

\(=\left(-\frac{a\sqrt{mn}}{b}-\frac{ab\sqrt{m}}{\sqrt{n}}+\frac{a^2}{b^2}.\sqrt{\frac{m}{n}}\right)\left(a^2b^2.\sqrt{\frac{n}{m}}\right)\)

\(=a^2b^2\left(\frac{-an}{b}-ab+\frac{a^2}{b^2}\right)=-a^3bn-a^3b^3+a^4=a^3\left(a-bn-b^3\right)\)

30 tháng 8 2018

đk: x;y;z dương nhé

áp dụng bđt cosi ta có:

\(x^2+yz>=2\sqrt{x^2yz}=2x\sqrt{yz};y^2+xz>=2\sqrt{y^2xz}=2y\sqrt{xz};z^2+xy=2\sqrt{z^2xy}=2z\sqrt{xy}\)

\(\Rightarrow\frac{1}{x^2+yz}< =\frac{1}{2x\sqrt{yz}};\frac{1}{y^2+xz}< =\frac{1}{2y\sqrt{xz}};\frac{1}{z^2+xy}< =\frac{1}{2z\sqrt{xy}}\)

\(\Rightarrow\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}< =\frac{1}{2x\sqrt{yz}}+\frac{1}{2y\sqrt{xz}}+\frac{1}{2z\sqrt{xy}}=\frac{1}{2}\left(\frac{1}{x\sqrt{yz}}+\frac{1}{y\sqrt{xz}}+\frac{1}{z\sqrt{xy}}\right)\left(1\right)\)

áp dụng bđt cosi ta có:

\(\frac{1}{xy}+\frac{1}{xz}>=2\cdot\sqrt{\frac{1}{xy}\cdot\frac{1}{xz}}=\frac{2}{x\sqrt{yz}};\frac{1}{xy}+\frac{1}{yz}>=2\cdot\sqrt{\frac{1}{xy}\cdot\frac{1}{yz}}=\frac{2}{y\sqrt{xz}};\)

\(\frac{1}{yz}+\frac{1}{xz}>=2\cdot\sqrt{\frac{1}{yz}\cdot\frac{1}{xz}}=\frac{2}{z\sqrt{xy}}\)

\(\Rightarrow\frac{1}{xy}+\frac{1}{xz}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{yz}+\frac{1}{xz}=\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}>=\frac{2}{x\sqrt{yz}}+\frac{2}{y\sqrt{xz}}+\frac{2}{z\sqrt{xy}}\)

\(\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}>=\frac{1}{x\sqrt{yz}}+\frac{1}{y\sqrt{xz}}+\frac{1}{z\sqrt{xy}}\)

\(\Rightarrow\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)>=\frac{1}{2}\left(\frac{1}{x\sqrt{yz}}+\frac{1}{y\sqrt{xz}}+\frac{1}{z\sqrt{xy}}\right)\left(2\right)\)

từ \(\left(1\right);\left(2\right)\Rightarrow\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}>=\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\left(đpcm\right)\)

dấu = xảy ra khi x=y=z

30 tháng 8 2018

nhầm từ \(\left(1\right);\left(2\right)\Rightarrow\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}< =\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)

Ai giải giúp mấy bài toán vsBài 1:A=\(\sqrt{\frac{1}{\text{√}2+1}-\frac{\text{√}8-\text{√}10}{2-\text{√}5}}\)B=\(\frac{5\text{√}5}{\text{√}5+2}+\frac{\text{√}5}{\text{√}5-1}-\frac{3\text{√}5}{3+\text{√}5}\)Bài 2 rút gọn biểu thứcA=\(\left(\frac{x+\sqrt[]{xy}}{\text{√}x+\text{√}y}-2\right):\frac{1}{\text{√}x+2}\) với x :y >0B=\(\left(\frac{a}{a-2\text{√}a}+\frac{a}{\text{√}a-2}\right):\frac{\text{√}a+1}{a-4\text{√}a+4}\)Bài 3 cho biểu...
Đọc tiếp

Ai giải giúp mấy bài toán vs

Bài 1:

A=\(\sqrt{\frac{1}{\text{√}2+1}-\frac{\text{√}8-\text{√}10}{2-\text{√}5}}\)

B=\(\frac{5\text{√}5}{\text{√}5+2}+\frac{\text{√}5}{\text{√}5-1}-\frac{3\text{√}5}{3+\text{√}5}\)

Bài 2 rút gọn biểu thức

A=\(\left(\frac{x+\sqrt[]{xy}}{\text{√}x+\text{√}y}-2\right):\frac{1}{\text{√}x+2}\) với x :y >0

B=\(\left(\frac{a}{a-2\text{√}a}+\frac{a}{\text{√}a-2}\right):\frac{\text{√}a+1}{a-4\text{√}a+4}\)

Bài 3 cho biểu thức

P=\(\left(\frac{x-2}{x+2\text{√}x}+\frac{1}{\text{√}x+2}\right)\frac{\text{√}x+1}{\text{√}x-1}\)

a)Rút gọn P

b)tìm x để P=\(\text{√}x+\frac{5}{2}\)

bài 4 rút gọn biểu thức 

A=\(\frac{1}{x+\text{√}x}+\frac{2\text{√}x}{x-1}-\frac{1}{x-\text{√}x}\)

B=\(\left(\frac{x}{x+3\text{√}x}+\frac{1}{\text{√}x+3}\right):\left(1-\frac{2}{\text{√}x}+\frac{6}{x+3\text{√}x}\right)\)

Bài 5

A=\(\left(\frac{2}{\text{√}x-3}-\frac{1}{\text{√}x+3}-\frac{x}{\text{√}x\left(x-9\right)}\right):\text{(√}x+3-\frac{x}{\text{√}x-3}\)

a)rút gọn A

b)tìm gtri x để A= -1/4

AI GIẢI GIÙM MÌNH ĐI MÌNH TẠ ƠN

0
17 tháng 1 2022

a) \(A=4\sqrt{x^2+1}-2\sqrt{16\left(x^2+1\right)}+5\sqrt{25\left(x^2+1\right).}\)

\(=4\sqrt{x^2+1}-2.4\sqrt{x^2+1}+5.5\sqrt{x^2+1}\)

\(=4\sqrt{x^2+1}-8\sqrt{x^2+1}+25\sqrt{x^2+1}\)

\(=\left(4-8+25\right)\sqrt{x^2+1}\)

\(=21\sqrt{x^2+1}\)

17 tháng 1 2022

b) \(B=\frac{2}{x+y}\sqrt{\frac{3\left(x+y\right)^2}{4}}\)

\(B=\frac{2}{x+y}.\frac{\sqrt{3}\left(x+y\right)}{2}\)

\(B=\frac{\sqrt{3}\left(x+y\right)}{x+y}\)

\(B=\sqrt{3}\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 1:

\(A=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}=\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2+3+2\sqrt{2.3}}\)

\(=\sqrt{(\sqrt{2}-\sqrt{3})^2}+\sqrt{\sqrt{2}+\sqrt{3})^2}\)

\(=|\sqrt{2}-\sqrt{3}|+|\sqrt{2}+\sqrt{3}|=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{3}\)

\(B=(\sqrt{10}+\sqrt{6})\sqrt{8-2\sqrt{15}}\)

\(=(\sqrt{10}+\sqrt{6}).\sqrt{3+5-2\sqrt{3.5}}\)

\(=(\sqrt{10}+\sqrt{6})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)

\(=\sqrt{2}(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})=\sqrt{2}(5-3)=2\sqrt{2}\)

\(C=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)

\(C^2=8+2\sqrt{(4+\sqrt{7})(4-\sqrt{7})}=8+2\sqrt{4^2-7}=8+2.3=14\)

\(\Rightarrow C=\sqrt{14}\)

\(D=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{2}\sqrt{3-\sqrt{5}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{6-2\sqrt{5}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{5+1-2\sqrt{5.1}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{(\sqrt{5}-1)^2}\)

\(=(3+\sqrt{5})(\sqrt{5}-1)^2=(3+\sqrt{5})(6-2\sqrt{5})=2(3+\sqrt{5})(3-\sqrt{5})=2(3^2-5)=8\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 2:

a) Bạn xem lại đề.

b) \(x-2\sqrt{xy}+y=(\sqrt{x})^2-2\sqrt{x}.\sqrt{y}+(\sqrt{y})^2=(\sqrt{x}-\sqrt{y})^2\)

c)

\(\sqrt{xy}+2\sqrt{x}-3\sqrt{y}-6=(\sqrt{x}.\sqrt{y}+2\sqrt{x})-(3\sqrt{y}+6)\)

\(=\sqrt{x}(\sqrt{y}+2)-3(\sqrt{y}+2)=(\sqrt{x}-3)(\sqrt{y}+2)\)