Tìm x, biết: x + (x+2)+(x+4)+...+(x+98)+(x+100)=3060
Em cần lời giải,giải thích a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(3^x+3^{x+1}+3^{x+2}=351\)
\(\Rightarrow3^x\left(1+3^1+3^2\right)=351\)
\(\Rightarrow3^x.13=351\)
\(\Rightarrow3^x=27\)
\(\Rightarrow3^x=3^3\)
\(\Rightarrow x=3\)
2) \(C=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(\Rightarrow C=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)...+2^{96}\left(2+2^2+2^3+2^4\right)\)
\(\Rightarrow C=30+2^4.30...+2^{96}.30\)
\(\Rightarrow C=\left(1+2^4+...+2^{96}\right).30⋮30\)
mà \(30=5.6\)
\(\Rightarrow C⋮5\left(dpcm\right)\)
1,
Có \(3^x\)+ \(3^{x+1}\) + \(3^{x+2}\) = \(351\)
=> \(3^x\) + \(3^x\).\(3\) + \(3^x\).\(9\) = \(351\)
=> \(3^x\).\(13\) = \(351\)
=> \(3^x\) = \(27\)
=> \(x\) = \(3\)
2,
C = \(2\) + \(2^2\) + \(2^3\) + ... + \(2^{100}\)
2C = \(2^2\) + \(2^3\) + \(2^4\) + ... + \(2^{101}\)
2C - C = \(2^{101}\) - \(2\)
C = \(2^{101}\) - \(2\)
C = \(2\).\(\left(2^{100}-1\right)\)
C = 2.\(\left(\left(2^5\right)^{20}-1^{20}\right)\)
Có \(2^5\) \(-1\) \(⋮\) 5
=> \(\left(\left(2^5\right)^{20}-1^{20}\right)\) \(⋮\) 5
=> C \(⋮\) 5
3,
Xét \(\overline{abcdeg}\)
= \(\overline{ab}\).\(10000\) + \(\overline{cd}\).\(100\) + \(\overline{eg}\)
= \(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\) + \(9.\left(1111.\overline{ab}+11.\overline{cd}\right)\)
Có\(\left\{{}\begin{matrix}9.\left(1111.\overline{ab}+11.\overline{cd}\right)⋮9\left(1111.\overline{ab}+11.\overline{cd}\inℕ^∗\right)\\\overline{ab}+\overline{cd}+\overline{eg}⋮9\end{matrix}\right.\)
=> \(\overline{abcdeg}⋮9\)
4,
S = \(3^0+3^2+3^4+...+3^{2002}\)
9S = \(3^2+3^4+3^6+...+3^{2004}\)
9S - S = \(3^2+3^4+3^6+...+3^{2004}\) - (\(3^0+3^2+3^4+...+3^{2002}\))
8S = \(3^{2004}-1\)
=> 8S \(< 3^{2004}\)
ta có đề bài <=>
(x+x+x+..+x)+(2+4+6+...+100)=3060
<=>51x+[(2+100).50]:2=3060
<=>51x+2550=3060
<=>51x=510
<=>x=10
vậy...
có số số hạng x là : ( 100 - 2 ) : 2 + 1 = 50
ta có: ( 2 + x ) + ( x + 4 ) + ... + ( 98 + x ) + ( 100 + x ) = 4550
50x + [ ( 2 + 100 ) x 50 : 2 ] = 4550
50x + 2500 = 4550
50x = 4550 - 2500
50x = 2050
x = 2050 : 50
x = 41
(2+x)+(4+x)+.....+(98+x)+(100+x)=4550
[x*(100-2)/2+1]+[(100-2)/2+1)*(100+2)/2]=4550
x*50+(50*102/2)=4550
x*50+2550=4550
x*50=2000(2 vế bớt 2550)
x=2000/50
x=40
\(A=20\times21+21\times22+...+99\times100\)
\(3\times A=20\times21\times\left(22-19\right)+21\times22\times\left(23-20\right)+...+99\times100\times\left(101-98\right)\)
\(=20\times21\times22-19\times20\times21+...+99\times100\times101-98\times99\times100\)
\(=99\times100\times101-19\times20\times21\)
Suy ra \(A=\frac{99\times100\times101-19\times20\times21}{3}=360640\)
\(B=3\times4\times5+4\times5\times6+...+98\times99\times100\)
\(4\times B=3\times4\times5\times\left(6-2\right)+4\times5\times6\times\left(7-3\right)+...+98\times99\times100\times\left(101-97\right)\)
\(=3\times4\times5\times6-2\times3\times4\times5+...+98\times99\times100\times101-97\times98\times99\times100\)
\(=98\times99\times100\times101-2\times3\times4\times5\)
Suy ra \(B=\frac{98\times99\times100\times101-2\times3\times4\times5}{4}=24497520\)
Ta có : (x + 1) + (x + 2) + ..... + (x + 100) = 5750
=> (x + x + ...... + x) + (1 + 2 + ..... + 100) = 5750
=> 100x + 5050 = 5750
=> 100x = 700
=> x = 7 .
( x + 1 ) + ( x + 2 ) + ... + ( x + 100 ) = 5750
( x + x +.... + x ) + ( 1 + 2 + ... + 100 ) = 5750
x.100 + 5050 = 5750
x.100 = 5750 - 5050
x.100 = 700
x = 700 :100
x = 7
CÓ \(4\left(x+2\right)-7\left(2x-1\right)+9\left(3x-4\right)=30\)
\(\Leftrightarrow4x+8-14x+7+27x-36=30\)
\(\Leftrightarrow\left(4x-14x+27x\right)+\left(8+7-36\right)=30\)
\(\Leftrightarrow17x-21=30\)
\(\Leftrightarrow17x=30+21\)
\(\Leftrightarrow17x=51\)
\(\Leftrightarrow x=\frac{51}{17}=3\)
Vậy x=3 là giá trị cần tìm
\(x+\left(x+2\right)+\left(x+4\right)+...+\left(x+98\right)+\left(x+100\right)=3060\)
\(\Leftrightarrow51x+\left(2+4+6+...+98+100\right)=3060\)
\(\Leftrightarrow51x+\dfrac{100+2}{2}.50=3060\)
\(\Leftrightarrow51x+2550=3060\)
\(\Leftrightarrow51x=3060-2550=510\)
\(\Rightarrow x=510:51=10\)
Đs....