cho tứ giác ABCD tìm điểm M nằm trong tứ giác sao cho MA+MB+MC+MD có giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I là giao điểm
Lấy điểm M bất kì trong tứ giác ABCD
Ta có: \(MA+MC\ge AC\)
\(MB+MD\ge BD\)
nên \(MA+MB+MC+MD\ge AC+BD\)( có giá trị không đổi )
Để MA + MB + MC + MD đạt giá trị nhỏ nhất thì:
\(MA+MB+MC+MD=AC+BD\Leftrightarrow"="MA+MC\ge AC\)\(\Rightarrow M\in AC\)
Tương tự xảy ra \("="\Leftrightarrow MB+MD\ge BD\Rightarrow M\in BD\)
Nên M trùng O
Vậy......................
Goi O là giao điểm 2 đường chéo AC và BD.
Lay điểm M bat ky ta luôn có:
MA + MC >= AC (1)
MB + MD >= BD (2)
=> MA + MB + MC + MD >= AC + BD khong doi
=> Min (MA + MB + MC + MD) = AC + BD xảy ra khi đồng thời xảy ra dấu = ở (1) <=> M thuộc AC và dấu = ở (2) <=> M cũng thuộc BD <=> M trùng O
Ung ho mk nhe
Ta có : \(MA+MC\ge AC\)
Dấu " = " xảy ra khi M thuộc AC
Ta có :\(MB+MD\ge BD\)
\(\Rightarrow MA+MC+MB+MD\ge AC+BD\)
Dấu " = " xảy ra khi M là giao điểm của AC, BD
Vậy khi M là giao điểm của AC và BD thì MA+MB+MC+MD nhỏ nhất
Theo đề bài ta có :\(MA+MC\ge AC\)
Dấu " = " xảy ra khi và chỉ khi \(M\in AC\)
Theo đề bài có : \(MB+MD\ge BD\)
Dấu " =" xảy ra khi và chỉ khi \(M\in BD\)
\(\Rightarrow MA+MB+MC+MD\ge AC+BD\)
Vậy \(MA+MB+MC+MD\)nhỏ nhất sẽ bằng \(AC+BD\)
\(\Leftrightarrow\)M là giao điểm của 2 đường chéo AC và BD .
Goi O là giao điểm 2 đường chéo AC và BD.
Lay điểm M bat ky ta luôn có:
MA + MC >= AC (1)
MB + MD >= BD (2)
=> MA + MB + MC + MD >= AC + BD khong doi
=> Min (MA + MB + MC + MD) = AC + BD xảy ra khi đồng thời xảy ra dấu = ở (1) <=> M thuộc AC và dấu = ở (2) <=> M cũng thuộc BD <=> M trùng O
Với 3 điểm M, A, C ta có MA+MC AC
Dấu "=" xảy ra M thuộc AC
Tương tự với 3 điểm M, B, D
ta có MB+MD BD
Dấu "=" xảy ra M thuộc BD
AM+MB+MC+MD AC+BD (không đổi )
Dấu "=" xảy ra
+ M thuộc AC M tại o
+ M thuộc BD
Vậy min ( AM+MB +MC+MD)= AC+BD M tại O
Ta có AEED =dt(AEN)dt(DEN) =hA→MNhD→MN =dt(AMN)dt(DMN)
Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)
dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)
Vậy AEED =dt(AMN)dt(DMN) =18 dt(ABC)14 dt(ABC) =12 , suy ra AE/AD = 1/3
Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)
DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB
DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)
=> AE/AD = 1/3
k mk nha
\(MA+MB=MC+MD\)
\(\left(MA+MD\right)+\left(MB+MC\right)\)
\(\left(MA+MD\right)\) nhỏ nhất khi \(AMD\) trên đường thẳng
\(\left(MB+MC\right)\) nhỏ nhất khi \(BMC\) trên đường thẳng
=> GTNN đạt được khi \(M\) là giao hai đường chéo \(AD,BC\)
Mình làm hai cách nhé
C D A D O M
Với ba điểm M, A, C => MA + MC ≥ AC
Ta có: MB + MD ≥ BD
AM + MB + MC - MD ≥ AC + BD (Không đổi)
Dấu ''='' xảy ra khi:
+) M thuộc AC <=> M = O
+) M thuộc BD
Vậy GTNN (AM + MB + MC + MD) = AC + BD <=> M = O