Cho x^2+y^2=9
Tìm GTLN cua Q=xy/(x+y+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) xy đạt giá trị lớn nhất khi x,y cùng dấu
Mà 2x+y=3 nên x,y phải dương
Áp dụng Cô-si cho 2 số dương 2x và y ta có:
\(2x+y\ge2\sqrt{2xy}\)
\(\Leftrightarrow3\ge2\sqrt{2xy}\Rightarrow xy\le\frac{9}{8}\)
b) Nghĩ đã
1 \(\left(2x+y\right)^2=4x^2+4xy+y^2=9\)
\(\left(2x-y\right)^2>=0\Rightarrow4x^2-4xy+y^2>=0\Rightarrow4x^2+y^2>=4xy\)
\(\Rightarrow4x^2+4xy+y^2=9>=4xy+4xy=8xy\Rightarrow\frac{9}{8}>=xy\)
dấu = xảy ra khi \(x=\frac{3}{4};y=\frac{3}{2}\)
vậy max của xy là \(\frac{9}{8}\)khi \(x=\frac{3}{4};y=\frac{3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Áp dụng bđt AM-GM: \(+\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2zx\end{cases}}\)\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\left(đpcm\right)\)
Dấu "=" xay ra khi \(x=y=z\)
b) Bổ đề; \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
Áp dụng : \(A=x^2+y^2+z^2\ge\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)
c) Bổ đề: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)
Áp dụng: \(B\le\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)
d) \(A+B=x^2+y^2+z^2+xy+yz+zx=\left(x+y+z\right)^2-\left(xy+yz+zx\right)\)
\(\ge\left(x+y+z\right)^2-\frac{\left(x+y+z\right)^2}{3}\)
\(=\frac{2}{3}\left(x+y+z\right)^2=6\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Bài này tuy dễ nhưng hơi loằng ngoằng giữa các câu :))
a. Cách phổ thông : x2 + y2 + z2\(\ge\)xy + yz + zx
<=> 2 ( x2 + y2 + z2 )\(\ge\)2 ( xy + yz + zx )
<=> ( x2 - 2xy + y2 ) + ( y2 - 2yz + z2 ) + ( z2 - 2zx + x2 )\(\ge\)0
<=> ( x - y )2 + ( y - z )2 + ( z - x )2\(\ge\)0 ( * )
Vì ( x - y )2 \(\ge\)0 ; ( y - z )2 \(\ge\)0 ; ( z - x )2\(\ge\)0\(\forall\)x ; y ; z
=> ( * ) đúng
=> A\(\ge\)B ; dấu "=" xảy ra <=> x = y = z
b. Xài Cauchy cho mới
( x2 + y2 + z2 ) ( 12 + 12 + 12 )\(\ge\)( x + y + z )2 = 32 = 9
<=> 3 ( x2 + y2 + z2 )\(\ge\)9
<=> x2 + y2 + z2\(\ge\)3
Dấu "=" xảy ra <=> x = y = z = 1
Vậy minA = 3 <=> x = y = z = 1
c. Theo câu a và câu b ta có : 3 ( xy + yz + zx )\(\le\)( x + y + z )2 = 32 = 9
<=> xy + yz + zx\(\le\)3
Dấu "=" xảy ra <=> x = y = 1
Vậy maxB = 3 <=> x = y = 1
d. x + y + z = 3 . BP 2 vế ta được
x2 + y2 + z2 + 2( xy + yz + zx ) = 9
Hay A + 2B = 9 . Mà B\(\le\)3 ( câu b )
=> A + B \(\ge\)6
Dấu "=" xảy ra <=> x = y = z = 1
Vậy min A + B = 6 <=> x = y = z = 1
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(\frac{1}{P}=\frac{\left(x+yz\right)\left(y+zx\right)\left(z+xy\right)^2}{x^3y^3}=\frac{x+yz}{y}\cdot\frac{y+zx}{x}\cdot\frac{\left(z+xy\right)^2}{x^2y^2}\)
\(=\left(\frac{x}{y}+z\right)\left(\frac{y}{x}+z\right)\left(\frac{z}{xy}+1\right)^2=\left[1+\left(\frac{x}{y}+\frac{x}{y}\right)z+x^2\right]\left(\frac{z}{xy}+1\right)^2\ge\left(1+2x+x^2\right)\)\(\left[\frac{4x}{\left(x+y\right)^2}+1\right]^2\)\(=\left(z+1\right)^2\left[\frac{4z}{\left(z-1\right)^2}+1\right]^2=\left[\frac{4z\left(z+1\right)}{\left(z-1\right)^2}+1\right]^2=\left[6+\frac{12}{z-1}+\frac{8}{\left(z-1\right)^2}+z-1\right]^2\)
\(=\left[6+\frac{12}{z-1}+\frac{3\left(z-1\right)}{4}+\frac{8}{\left(z-1\right)^2}+\frac{z-1}{8}+\frac{z-1}{8}\right]\)
Áp dụng BĐT Cosi ta có:
\(\frac{1}{P}\ge\left[6+2\sqrt{\frac{12}{z-1}\cdot\frac{3\left(z-1\right)}{3}}+3\sqrt[3]{\frac{8}{\left(z-1\right)^2}\cdot\frac{z-1}{8}\cdot\frac{z-1}{8}}\right]^2=\frac{729}{4}\)
\(\Rightarrow P\le\frac{4}{729}\). dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y=2\\z=5\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\text{Ta có : }x+y=1\Rightarrow\left\{{}\begin{matrix}1-y=x\\y-1=-x\end{matrix}\right.\left(1\right)\\ \)
\(A=x^2+xy-x+xy^2+y^3-y^2+xy\)
\(A=\left(x^2+xy\right)-\left(x-xy\right)+\left(y^3-y^2\right)+xy^2\)
\(A=x\left(x+y\right)-x\left(1-y\right)+y^2\left(y-1\right)+xy^2\)
Thay \(\left(1\right)\) vào suy ra :
\(A=x\left(1\right)-x\left(x\right)+y^2\left(-x\right)+xy^2\)
\(A=x-x^2+\left(-xy^2\right)+xy^2\)
\(A=x-x^2-xy^2+xy^2\)
\(A=x-x^2-\left(xy^2-xy^2\right)\)
\(A=x-x^2\)
Mà \(x^2\ge0\)
\(\Rightarrow A=x-x^2\le x\)
Dấu \("="\) xảy ra khi : \(x^2=0\Rightarrow x=0\)
\(\Rightarrow A=x-x^2\le0\)
Vậy \(A_{\left(max\right)}=0\) khi \(x=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
x+y=t=>\(xy=\frac{t^2-9}{2}\)
!\(\orbr{\begin{cases}2xy\le9\\x+y=t\end{cases}\Rightarrow}!t!\le3\sqrt{2}\)
\(\Leftrightarrow q=\frac{t^2-9}{2\left(t+3\right)}\Rightarrow t\ne-3\Rightarrow Q=\left(\frac{t-3}{2}\right)\)
Hiển nhiên t càng lớn => Q càng lớn
=> \(Q_{max}=Q\left(3\sqrt{2}\right)=\frac{3\sqrt{2}-3}{2}=\frac{3}{2}\left(\sqrt{2}-1\right)\) Đạt đươc khi t=\(3\sqrt{2}\)
Giải hệ
\(\hept{\begin{cases}2xy=9\\x+y=3\sqrt{2}\end{cases}}\Rightarrow x=y=\frac{3\sqrt{2}}{2}\)