Chứng minh 3√6-2√5 luôn >2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Ta có :
\(a^2+b^2\ge2ab\)
\(;a^2+1\ge2a\)
\(;b^2+1\ge2b\)
\(\Rightarrow a^2+b^2+a^2+b^2+2\ge2ab+2a+2b\)
\(\Rightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\)
\(\Rightarrow a^2+b^2+1\ge ab+a+b\)
Bài 2 :
\(A=x^2-6x+10=\left(x-3\right)^2+1>0\) với mọi x
\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\) với mọi x
\(<=>x^5\left(x-1\right)+x^3\left(x-1\right)+x\left(x-1\right)+\frac{3}{4}>0\)
\(<=>x\left(x-1\right)\left(x^4+x^2+1\right)+\frac{3}{4}>0\)
\(<=>\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\left(x^4+x^2+1\right)+\frac{3}{4}>0\)
\(<=>\left(x-\frac{1}{2}\right)^2\left(x^4+x^2+1\right)-\frac{1}{4}\left(x^4+x^2+1\right)+\frac{3}{4}>0\)
Nhận xét:
\(\left(x-\frac{1}{2}\right)^2\left(x^4+x^2+1\right)\ge0\left(1\right)\)
\(\left(x^4+x^2+1\right)\ge1=>-\frac{1}{4}\left(x^4+x^2+1\right)\ge-\frac{1}{4}\)
\(=>-\frac{1}{4}\left(x^4+x^2+1\right)+\frac{3}{4}\ge\frac{1}{2}\left(2\right)\)
Từ 1 và 2 => Tổng > 0 => ĐPCM
1 . a) Thực hiện so sánh 3a và 3b, 3a+1 và 3b+1 từ đó rút ra điêu cần chứng minh
b) Thực hiện so sánh -2a và -2b, -2a - 5 và -2b -5 từ đó rút ra điêu cần chứng minh
Cậu tự trình bày nhé ? Giảng sơ sơ thế là hiểu ấy
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6\)
\(=6\left(n+1\right)\) chia hết cho 6
=>\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) chia hết cho 6