a+b+c/a+b-c=a-b+c/a-b-c
cmr c=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{a-b}=\frac{1}{b-c}-\frac{1}{c}\Leftrightarrow\frac{1}{a-b}+\frac{1}{c}=\frac{1}{b-c}-\frac{1}{a}\)
\(\Leftrightarrow\frac{c+a-b}{\left(a-b\right)c}=\frac{a-b+c}{\left(b-c\right)a}\)(1)
Do \(\frac{a}{c}=\frac{a-b}{b-c}\Leftrightarrow a\left(b-c\right)=\left(a-b\right)c\)nên (1) đúng, đẳng thức được CM
Lời giải:
Gọi biểu thức đã cho là $A$.
CM vế 1:
Ta có:
$\frac{a+b}{a+b+c}> \frac{a+b}{a+b+c+d}$
$\frac{b+c}{b+c+d}> \frac{b+c}{a+b+c+d}$
$\frac{c+d}{c+d+a}> \frac{c+d}{a+b+c+d}$
$\frac{d+a}{d+a+b}> \frac{d+a}{a+b+c+d}$
Cộng lại: $A> \frac{2(a+b+c+d)}{a+b+c+d}=2>1$
CM vế 2:
Ta thấy $\frac{a+b}{a+b+c}-\frac{a+b+d}{a+b+c+d}=\frac{-cd}{(a+b+c)(a+b+c+d)}< 0$ với $a,b,c,d>0$
$\Rightarrow \frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}$
Hoàn toàn tương tự với các phân thức còn lại:
$\Rightarrow A< \frac{3(a+b+c+d)}{a+b+c+d}=3$
Ta có đpcm.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{ab+bc+ca+c^2}{abc\left(a+b+c\right)}\right)=0\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\) \(\Rightarrow B=0\)