nếu xy=3,xz=4 và yz=6 thì giá trị của A = x^2 + y^2 + z^2 là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x . y . x . z . y . z = 3 . 4 . 6
(x . x) . (y . y) . (z . z) = 72
x2 . y2 . z2 = 72
=>A=72
\(xy=3;xz=4;yz=6\Rightarrow xy.xz.yz=3.4.6\Leftrightarrow\left(xyz\right)^2=72\)\(\Leftrightarrow xyz=\pm6\sqrt{2}\)
+)\(xyz=-6\sqrt{2}\) => \(x=-\sqrt{2};y=-\frac{3\sqrt{2}}{2};z=-2\sqrt{2}\)
Thay vào A
+))\(xyz=6\sqrt{2}\) => \(x=\sqrt{2};y=\frac{3\sqrt{2}}{2};z=2\sqrt{2}\)
Thay vào A
\(\left\{\begin{matrix}xy=3\left(1\right)\\xz=4\left(2\right)\\yz=6\left(3\right)\end{matrix}\right.\).Từ \(yz=6\Rightarrow z=\frac{6}{y}\) thay vào (2) ta có:
\(xz=4\Rightarrow x\cdot\frac{6}{y}=4\)\(\Leftrightarrow\frac{6x}{y}=4\Leftrightarrow6x=4y\Leftrightarrow y=\frac{6x}{4}=\frac{3x}{2}\) thay vào (1) ta có:
\(x\cdot\frac{3x}{2}=3\Leftrightarrow\frac{3x^2}{2}=3\Leftrightarrow3x^2=6\Leftrightarrow x^2=2\)
Từ \(\left(1\right)\Rightarrow x^2y^2=9\Rightarrow y^2=\frac{9}{x^2}=\frac{9}{2}\)
Từ \(\left(2\right)\Rightarrow x^2z^2=16\Rightarrow z^2=\frac{16}{x^2}=\frac{16}{2}=8\)
Khi đó \(A=x^2+y^2+z^2=2+\frac{9}{2}+8=\frac{29}{2}\)
Ta có: \(x^2+y^2-z^2\)
\(=\left(x+y\right)^2-z^2-2xy\)
\(=\left(x+y+z\right)\left(x+y-z\right)-2xy\)
\(=-2xy\)
Ta có: \(x^2+z^2-y^2\)
\(=\left(x+z\right)^2-y^2-2xz\)
\(=\left(x+y+z\right)\left(x+z-y\right)-2xz\)
\(=-2xz\)
Ta có: \(y^2+z^2-x^2\)
\(=\left(y+z\right)^2-x^2-2yz\)
\(=\left(x+y+z\right)\left(y+z-x\right)-2yz\)
\(=-2yz\)
Ta có: \(\dfrac{xy}{x^2+y^2-z^2}+\dfrac{xz}{x^2+z^2-y^2}+\dfrac{yz}{y^2+z^2-x^2}\)
\(=\dfrac{xy}{-2xy}+\dfrac{xz}{-2xz}+\dfrac{yz}{-2yz}\)
\(=\dfrac{1}{-2}+\dfrac{1}{-2}+\dfrac{1}{-2}\)
\(=\dfrac{-3}{2}\)
Ta có: \(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\)
\(\left(y-z\right)\ge0\Leftrightarrow y^2+z^2\ge2yz\)
\(\left(z-x\right)^2\ge0\Leftrightarrow z^2+x^2\ge2zx\)
\(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\)
\(\left(y-1\right)^2\ge0\Leftrightarrow y^2+1\ge2y\)
\(\left(z-1\right)^2\ge0\Leftrightarrow z^2+1\ge2z\)
Cộng lại vế với vế ta được:
\(3\left(x^2+y^2+z^2\right)+3\ge2xy+2yz+2zx+2x+2y+2z\)
\(\Leftrightarrow Q\ge\frac{2\left(x+y+yz+xy+yz+zx\right)-3}{3}=3\)
Dấu \(=\)khi \(x=y=z=1\).
Ta có: \(x+y+z+xy+yz+xz\le x+y+z+\frac{\left(x+y+z\right)^2}{3}\)
=> \(\left(x+y+z\right)^2+3\left(x+y+z\right)\ge3.6=18\)
<=> \(\left(x+y+z\right)^2+3\left(x+y+z\right)-18\ge0\)
<=> \(\left(x+y+z-3\right)\left(x+y+z+6\right)\ge0\)
<=> \(x+y+z\ge3\)(vì x + y + z + 6 > 0 vì x,y,z > 0)
Do đó: \(Q=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{3^2}{3}=3\)
Dấu "=" xảy ra<=> x = y= z và x + y + z = 3 <=> x = y = z = 1
Vậy MinQ = 3 <=> x = y= z = 1
xy=4 , xz=6
=> \(x^2zy\)= 3x4=12
=>\(x^2\)=\(12:yz=12:6=2\)
\(xz=4,yz=6\)
=>\(z^2xy=6x4=24\)
=>\(z^2=24:xy=8\)
\(xy=3,yz=6\)
=>\(xy^2z=6x3=18\)
=>\(y^2=18:xz=18:4=4.5\)
Vậy \(x^2+y^2+z^2=2+8+4.5=14.5\)