tìm các số tự nhiên x,y biết
x. ( y - 1) - y= 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{3}-\dfrac{1}{y+1}=\dfrac{1}{6}\)
=>\(\dfrac{xy+x-3}{3\left(y+1\right)}=\dfrac{1}{6}\)
=>\(2\left(xy+x-3\right)=1\)
=>2xy+2x-6=1
=>2xy+2x=7
=>2x(y+1)=7
=>x(y+1)=7/2
mà x,y nguyên
nên \(\left(x,y\right)\in\varnothing\)
1/y+1=x/3-1/6
1/y+1=2x/6-1/6
1/y+1= 2x-1/6
=> 1.6=(y+1).(2x-1)
ta có bảng
y+1 6 1
Past lives couldn't ever hold me down2x-1 1 6 ...
y 5 0
x 1 7/2
loại
\(\dfrac{x}{3}=x+y=20\Rightarrow x=60\Rightarrow60+y=20\Rightarrow y=-40\)
\(\left(x-2\right)\left(y+1\right)=-2\\ -2=1.\left(-2\right)=2.\left(-1\right)\)
Vì `y in NN` nên `y + 1 <= 1`
`=>` \(\left[ \begin{array}{l}\begin{cases}x-2 = -2\\ y+1 = 1\end{cases}\\\begin{cases}x-2 = 1\\ y+1 = -2\end{cases}\\ \begin{cases}x-2 = 2\\ y+1 = -1\end{cases}\\\begin{cases}x-2 = -1\\ y+1 = 2\end{cases}\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}\begin{cases}x = 0\\ y = 0\end{cases}\\\begin{cases}x = 3\\ y = -3\end{cases} (ktm)\\ \begin{cases}x = 4\\ y = -2\end{cases} (ktm)\\\begin{cases}x = 1\\ y = 1\end{cases}\end{array} \right.\)
Vậy `(x;y)={(0;0) ; (1;1)}`
a) x+15 là bội của x+3
\(\Rightarrow\)x+15\(⋮\)x+3
\(\Rightarrow\)x+3+12\(⋮\)x+3
x+3\(⋮\)x+3
\(\Rightarrow\)12\(⋮\)x+3
\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
\(\Rightarrow x\in\left\{-4;-2;-5;-1;-6;0;-7;1;-15;9\right\}\)
Vậy x\(\in\){-4;-2;-5;-1;-6;0;-7;1;-15;9}
b) (x+1).(y-2)=3
\(\Rightarrow\)x+1 và y-2 thuộc Ư(3)={1;-1;3;-3}
Có :
x+1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
y+2 | 3 | -3 | 1 | -1 |
y | 1 | -5 | -1 | -3 |
Vậy (x;y)\(\in\){(0;1);(-2;-5);(2;-1);(-4;-3)}
Câu c tương tự câu b
g) Ta có : (x,y)=5
\(\Rightarrow\hept{\begin{cases}x⋮5\\y⋮5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=5m\\y=5n\\\left(m,n\right)=1\end{cases}}\)
Mà x+y=12
\(\Rightarrow\)5m+5n=12
\(\Rightarrow\)5(m+n)=12
\(\Rightarrow\)m+n=\(\frac{12}{5}\)
Bạn có thể xem lại đề được không ạ? Vì đến đây 12 không chia hết cho 5 nhé! Phần h bạn nên viết lại đề vì ƯCLN=[x,y]=8 tớ không hiểu lắm...
Lời giải:
Nếu $y\vdots 5$ thì $5^x=y^2+y+1$ chia 5 dư 1
$\Rightarrow x=0$
Khi đó: $y^2+y+1=5^0=1\Rightarrow y^2+y=0$
$\Rightarrow y(y+1)=0$. Mà $y$ là stn nên $y=0$
Nếu $y$ chia 5 dư 1. Đặt $y=5k+1$. Khi đó:
$y^2+y+1=(5k+1)^2+5k+1+1=25k^2+15k+3$ chia 5 dư 3
$\Rightarrow 5^x$ chia 5 dư 3 (vô lý -loại)
Nếu $y$ chia 5 dư 2. Đặt $y=5k+2$, Khi đó:
$y^2+y+1=(5k+2)^2+5k+2+1=25k^2+25k+7$ chia 5 dư 2
$\Rightarrow 5^x$ chia 5 dư 2 (vô lý)
Nếu $y$ chia 5 dư 3. Đặt $y=5k+3$, Khi đó:
$y^2+y+1=(5k+3)^2+5k+3+1=25k^2+35k+13$ chia 5 dư 3
$\Rightarrow 5^x$ chia 5 dư 3 (vô lý)
Nếu $y$ chia 5 dư 4. Đặt $y=5k+4$, Khi đó:
$y^2+y+1=(5k+4)^2+5k+4+1=25k^2+45k+21$ chia 5 dư 1
$\Rightarrow 5^x$ chia 5 dư 1 $\Rightarrow x=0$
$\Rightarrow y^2+y+1=5^x=1\Rightarrow y^2+y=0$
$\Rightarrow y(y+1)=0\Rightarrow y=0$ (do $y$ là stn). Mà $y$ chia 5 dư 4 nên ô lý.
Vậy $(x,y)=(0,0)$
\(3xy-2y+6x=0\)
\(\Leftrightarrow3xy+6x-2y-4+4=0\)
\(\Leftrightarrow3x\left(y+2\right)-2\left(y+2\right)+4=0\)
\(\Leftrightarrow\left(y+2\right)\left(3x-2\right)=-4\)
Vì x,y là các số nguyên nên y+2 và 3x-2 cũng là các số nguyên
\(\Leftrightarrow\left(y+2\right)\left(3x-2\right)=1.\left(-4\right)=\left(-1\right).4\)
Ta có bảng sau:
y+2 | -1 | 4 | -4 | 1 |
y | -3 | 2 | -6 | -1 |
3x-2 | 4 | -1 | 1 | -4 |
3x | 6 | 1 | 3 | -2 |
x | 2 | \(\dfrac{1}{3}\)(loại) | 1 | \(\dfrac{-2}{3}\)(loại) |
TH1: \(y=-3\) ;\(x=2\) thì \(x+y=2+\left(-3\right)=-1\)
TH2: \(y=-6;x=1\) thì \(x+y=-6+1=-5\)
Vậy \(x+y=-1\) khi \(y=-3\) và \(x=2\)
\(x+y=-5\) khi \(y=-6;x=1\)
Giải:
Ta có:
\(3xy-2y+6x=0\)
\(\Rightarrow3x.\left(y+2\right)-2y-4=-4\)
\(\Rightarrow3x.\left(y+2\right)-2.\left(y+2\right)=-4\)
\(\Rightarrow\left(3x-2\right).\left(y+2\right)=-4\)
\(\Rightarrow\left(3x-2\right)\) và \(\left(y+2\right)\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta có bảng giá trị:
3x-2 | -4 | -2 | -1 | 1 | 2 | 4 |
y+2 | 1 | 2 | 4 | -4 | -2 | -1 |
x | \(\dfrac{-2}{3}\) (loại) | 0 (t/m) | \(\dfrac{1}{3}\) (loại) | 1 (t/m) | \(\dfrac{4}{3}\) (loại) | 2 (t/m) |
y | -1 | 0 | 2 | -6 | -4 | -3 |
Vậy \(\left(x;y\right)=\left\{\left(0;0\right);\left(1;-6\right);\left(2;-3\right)\right\}\)
\(\left(+\right)TH1:x+y=0+0=0\)
\(\left(+\right)TH2:x+y=1+-6=-5\)
\(\left(+\right)TH3:x+y=2+-3=-1\)
Chúc bạn học tốt!
\(\Rightarrow x\left(y-1\right)-\left(y-1\right)=3\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=3\)
\(\Rightarrow\left(x-1\right),\left(y-1\right)\inƯ\left(3\right)=\left\{3;1\right\}\)
Sau đó thay vào để tìm x,y