Chứng minh rằng
-x2-2x-2<0 với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)
b) \(x-x^2-3=-\left(x^2-x+3\right)\)
\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)
x^2 + 2x + 2 = x^2 + 2.x.1 + 1^2 +1 = (x + 1)^2 + 1 > 0
-x^2 + 4x - 4 = -(x^2 - 2.x.2 + 2^2) = -(x - 2)^2 <= 0
a) ta co ; x^2+ 2x+ 2= (x2+2x+1)+1=(x+1)2+1>0
vi (x+1)2>hoặc=0;1>0suy ra x^2+ 2x+ 2>0
b)ta co -x2+4x-4=-(x2-4x+4)=-(x-2)2<0
a) Đề sai thì phải.Phải là CM: \(x^2-x+1>0\) với mọi x
Ta có:
\(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\) nên \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Vậy \(x^2-x+1>0\) với mọi \(x\in R\)
b)Ta có:
\(-x^2+2x-4=-\left(x^2-2x+1\right)-3\)
\(=-\left(x-1\right)^2-3\)
Vì \(-\left(x-1\right)^2\le0\) với mọi x nên \(-\left(x-1\right)^2-3< 0\)
Vậy \(-x^2+2x-4< 0\) với mọi \(x\in R\)
a,2x2+8x+20=2(x2+4x)+20
=2(x2+4x+4)+20-4.2
=2(x+2)2+12
Ta có : 2(x+2)2 \(\ge0với\forall x\)
12 > 0
\(\Rightarrow\)2(x+2)2+12>0 với \(\forall x\)
\(\Rightarrow\)2x2+8x+20>0 với \(\forall\)x
b,x4-3x2+5
=(x4-3x2)+5
=(x4-2.\(\frac{3}{2}\)x2+\(\frac{9}{4}\))+5-\(\frac{9}{4}\)
=(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}\)
Có : (x2-3/2)2\(\ge0với\forall x\)
\(\frac{11}{4}\)>0
\(\Rightarrow\)(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}>0với\forall x\)
- x2 + 2x - 2
= - ( x2 - 2x + 1) - 1
= - ( x - 1)2 - 1
Do : - ( x - 1)2 nhỏ hơn hoặc bằng 0 với mọ x thuộc R
=> - ( x - 1)2 - 1 nhỏ hơn hoặc bằng -1 với ọõi x thuộc R
Dấu bằng xảy ra khi : x - 1 = 0 => x = 1
Vậy,....
a) \(x^2+xy+y^2+1\)
\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)
\(\Rightarrow dpcm\)
b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)
\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)
\(\Rightarrow dpcm\)
Bài làm:
a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)
\(=-\left(2x+1\right)^2-1\le-1< 0\left(\forall x\right)\)
=> đpcm
b) \(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2-8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y-1\right)^2+\left(z-3\right)^2+1\ge1>0\left(\forall x\right)\)
=> đpcm
a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)
\(=-\left(2x+1\right)^2-1\)
Vì \(-\left(2x+1\right)^2\le0\forall x\)\(\Rightarrow\)\(-\left(2x+1\right)^2-1\le-1\forall x\)
\(\Rightarrow\)\(-\left(2x+1\right)^2-1< 0\forall x\)
\(\Rightarrow\)\(-4x^2-4x-2< 0\forall x\)( ĐPCM )
b) Ta có: \(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(2y+2\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\)\(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2\ge0\forall x,y,z\)
\(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\ge1\forall x,y,z\)
\(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\forall x,y,z\)( ĐPCM )
ta có.
-x²-2x-2=-(x²+2x+2) =-[(x²+2x+1)+1] =-(x+1)²-1
Do (x+1)²>=0 => -(x+1)²<0
=>-(x+1)²-1<0 hay -x²-2x-2<0 ( đpcm)