Cho: \(\frac{a}{m}+\frac{n}{b}=1\) và \(\frac{b}{n}+\frac{p}{c}=1\)
CMR: abc+mnp=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài suy ra \(\frac{1}{a+1}\ge\left(1-\frac{1}{b+1}\right)+\left(1-\frac{1}{c+1}\right)=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\)
Tương tự với hai bđt kia rồi nhân theo vế suy ra
\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
Do a, b, c>0 nên (a+1)(b+1)(c+1) > 0 suy ra:
\(1\ge8abc\Leftrightarrow abc\le\frac{1}{8}\left(đpcm\right)\)
Đẳng thức xảy ra khi a = b = c = 1/2
\(VT\ge\frac{27}{abc}+abc=abc+\frac{1}{abc}+\frac{26}{abc}\ge2+\frac{26}{\frac{\left(a+b+c\right)^3}{27}}=26+2=28\left(a+b+c=3\right)\)
Dấu bằng xảy ra khi a=b=c=1
\(VT=\frac{1}{\sqrt{\left(a+1\right)\left(a^2-a+1\right)}}+\frac{1}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}+\frac{1}{\sqrt{\left(c+1\right)\left(c^2-c+1\right)}}\)
\(VT\ge\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}\)
Do \(abc=8\) nên tồn tại các số dương x;y;z sao cho: \(\left\{{}\begin{matrix}a=\frac{2x}{y}\\b=\frac{2y}{z}\\c=\frac{2z}{x}\end{matrix}\right.\)
\(\Rightarrow VT\ge\frac{y^2}{2x^2+y^2}+\frac{z^2}{2y^2+z^2}+\frac{x^2}{2z^2+x^2}\)
\(\Rightarrow VT\ge\frac{x^4}{x^4+2x^2z^2}+\frac{y^4}{y^4+2x^2y^2}+\frac{z^4}{z^4+2y^2z^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2}=1\)
Dấu "=" xảy ra khi \(a=b=c=2\)
Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+0.\frac{2}{abc}}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\left(a+b+c\right).\frac{2}{abc}}\)
\(=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{ac}+\frac{2}{bc}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)