CMR: n2 + n + 2 không chia hết cho 3 với mọi n > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)
\(=3\left(2n+3\right)⋮3\)
b: Đặt A=\(\left(n-5\right)^2-n^2\)
\(A=\left(n-5\right)^2-n^2\)
\(=n^2-10n+25-n^2\)
\(=-10n+25=5\left(-2n+5\right)⋮5\)
\(A=\left(n-5\right)^2-n^2\)
\(=-10n+25\)
\(-10n⋮2;25⋮̸2\)
=>-10n+25 không chia hết cho 2
=>A không chia hết cho 2
(n + 3)² - n² = n² + 6n + 9 - n²
= 6n + 9
= 3(3n + 3) ⋮ 3
Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ
--------
(n - 5)² - n² = n² - 10n + 25 - n²
= -10n + 25
= -5(2n - 5) ⋮ 5
Do -10n ⋮ 2
25 không chia hết cho 2
⇒ -10n + 25 không chia hết cho 2
Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(n^2+3n+11\)
\(=n^2+3n+18-7\)
\(=\left(n+2\right)\left(n+9\right)-7\)
Giả sử: \(n^2+3n+11\) ⋮ 49 \(\Rightarrow n^2+3n+11\) ⋮ 7
Mà: \(\left(n+9\right)-\left(n+2\right)\) ⋮ 7
Đồng thời ta có: \(\left(n+9\right)\left(n+2\right)\) ⋮ 49 ngược lại 7 \(⋮̸\)49
Nên điểu giả sử là sai \(\Rightarrow n^2+3n+11⋮̸49\left(dpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\)
Vì n;n-1;n+1 là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!\)
hay \(n\left(n-1\right)\left(n+1\right)⋮6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử n2 và n là số lẻ
Ta có n2 = n.n
Vì n lẻ nên n.n là số lẻ
=> n2 lẻ (trái giả thiết)
Vậy n2 lẻ thì n lẻ
bài còn lại làm tương tự
1/ Giả sử \(n^2\) là số lẻ nhưng n là một số chẵn.
Khi đó, n = 2k (k thuộc N*)
Ta có : \(n^2=\left(2k\right)^2=4k^2\) luôn là một số chẵn, vậy trái với giả thiết.
Vậy điều phản chứng sai. Ta có đpcm
2/ Tương tự.
Thử các trừơng hợp là ra
(1)Vơi n=3k hiển nhiên ko chia hết cho 3
(2)Với n=3k+1=>(9k^2+6k+1)+3k+1 chia 3 dư 2
(3)với n=3k+2=> (9k^2+12k+4)+3k+2+1 chia 3 dư1
(1)(2)(3)=> dpcm
đúng với mọi n thuộc N ( không cần loại n=0)