tìm a-b biết
a:4=b:7
và a.b =28
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{4}=\frac{b}{7}=k\)
\(\Rightarrow\hept{\begin{cases}a=4k\\b=7k\end{cases}}\)
Thay vào đẳng thức a.b = 28
=> 4k . 7k = 28
=> 28.k2 = 28
=> k2 = 1
=> \(k=\orbr{\begin{cases}1\\-1\end{cases}}\)
Với k = 1
=> a = 4 ; b = 7
Với k = -1
=> a = -4 ; b = -7
Bài 1:
a. Gọi d là ƯCLN(n+2, n+3). Khi đó:
$n+2\vdots d; n+3\vdots d$
$\Rightarrow (n+3)-(n+2)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+1, 9n+4)$
$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$
$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.
Bài 2:
a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.
Khi đó: $a+b=24x+24y=192$
$\Rightarrow 24(x+y)=192$
$\Rightarrow x+y=8$
Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$
$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$
a: Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
\(\Leftrightarrow cosA=\dfrac{13^2+15^2-12^2}{2\cdot13\cdot15}=\dfrac{25}{39}\)
=>\(\widehat{A}\simeq50^0\)
b: Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(\dfrac{5^2+8^2-BC^2}{2\cdot5\cdot8}=cos60=\dfrac{1}{2}\)
=>\(25+64-BC^2=40\)
=>\(BC^2=49\)
=>BC=7
Do a+b=12=>a=12-b
Có:a.b=28
<=>(12-b).b=28
<=>12-b,b thuộc Ư(8)
đến đó rùi giải tiếp nha bạn, theo phương tình ước í, kik cho mk nha
a:4 = b:7 và a.b = 28
=> \(\frac{a}{4}=\frac{b}{7}=\frac{a.b}{4.7}=\frac{28}{28}=1\)
=> \(\frac{a}{4}=1\Rightarrow a=1\times4\div1=4\)
=> \(\frac{b}{7}=1\Rightarrow b=1\times7\div1=7\)
Vậy a - b = 4 - 7 = -3
a:4=b:7
suy ra a/4=b/7
đặt a/4=b/7=k
suy ra a=4k:b=7k
thay vào a.b =28
tìm đc k rồi tìm đc a;b